NAVAL POSTGRADUATE SCHOOL
Monterey, California

19960801 073 THEsIs

RESEARCH ON MOTION PLANNING
, OF
AUTONOMOUS MOBILE ROBOT

by
Athanassios Papadatos
March 1996
Thesis Advisor: Yutaka J. Kanayama
Thesis Co-Advisor: Xiaoping Yun

Approved for public release; distribution is unlimited.

DITC gosr e 1 D
v SUALIYY msrmorgp 1

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
" CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

e |

Form Approved
REPORT DOCUMENTATION PAGE OMEB No. 0704-0188
Public reporting burden for this coltection of infc ion is esti d to ge 1 hour per resp including the time reviewing i i hing existing data sources
gathering and maimaining.thc data needed, and leting and reviewing the collection of inf ion. Send garding this burden esti or any other aspect of this

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
' March 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
RESEARCH ON MOTION PLANNING OF AUTONOMOUS
MOBILE ROBOT(U)
6. AUTHOR(S)

Papadatos, Athanassios

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)]] L L B . .
The path planning algorithm in Yamabico is based on a variation of Dijkstra’s algorithm which

has time complexity of 0(nz}. This algorithm works well in a dynamic environment, but a faster

algorithm, called the All-Pairs Minimum Cost Paths algorithm, works even faster, O (1), in the case of
a static environment.

The computational complexity of the All-Pairs algorithm is 0(n3} , but if we know all pairs in

advance, that is, the environment is static, we can preprocess them in advance, and use table lookup
instead of Dijkstra’s algorithm. Thus, we implemented a table lookup version for the static case, and kept
Dijkstra’s algorithm for the dynamic case. This results in both speed and flexibility.

This thesis also investigated the Linear Fitting Algorithm for Sonar testing. Range and angle data,
from sonar, was fit to a straight line, giving resolution of 1 to 2.5 cm when the robot is within 100 to 150
cm of the line.

14. SUBJECT TERMS . . . 15. NUMBER OF PAGES
Robotics, Sonar Testing, Global Motion Planning 116

————
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS !’AGE OF ABSTRACT .
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 ' Standard Form 298 (Rev. 2-89)
i Prescribed by ANSI Std. 239-18

R

i

Approved for public release; distribution is unlimited

RESEARCH ON MOTION PLANNING
OF AUTONOMOUS MOBILE ROBOT

Athanassios Papadatos
Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

March 1996

Author: '
uthor %/M

-~ Athanassios Papadatos

Approved by: L W Mm

Yutaka Kanayama, Th(sm(Adwsor

(\em‘wv\r% L

Xiaoping Yun, Thcsm Co- Adv1so

Dbt

Ted Lewis, Chairman,
Department of Computer Science

i

iv

ABSTRACT

The path planning algorithm in Yamabico is based on a variation of Dijkstra’s

algorithm which has time complexity of 0 (%) . This algorithm works well in a dynamic
environment, but a faster algorithm, called the All-Pairs Minimum Cost Paths algorithm,

works even faster, 0 (1) , in the case of a static environment.

The computational complexity of the All-Pairs algorithm is 0 (n’y , but if we know
all pairs in advance, that is, the environment is static, we can preprocess them in advance,
and use table lookup instead of Dijkstra’s algorithm. Thus, we implemented a table lookup
version for the static case, and kept Dijkstra’s algorithm for the dynamic case. This results
in both speed and flexibility.

This thesis also investigated the Linear Fitting Algorithm for Sonar testing. Range
and angle data, from sonar, was fit to a straight line, giving resolution of 1 to 2.5 cm when

the robot is within 100 to 150 cm of the line.

vi

TABLE OF CONTENTS

L. INTRODUCTIONcccesurimmrrririnnenrsreresesrrsesessssssesssaeseseesnes e 1
A, BACKGROUNDccocetomrrrieerererereresenessseressssssssssssseseensesesssesssesesasesesesssssens 1

B, OVERVIEW ...ttt e sessss st sesssesessasesesesessese s 1

1. SONAT ..oeerictctcticrctctet ettt st et e sttt eensses e s e seesssansanas 1

2. Global Motion PIanningc.ceeeeeeeeivenietnereeereeer e ceeeeeeeevses e 2

II. PROBLEM STATEMENTScoiiiotmeeetetereteeeresesesseeseeeeeeeseeesresesessssese e seen 3
A. SONAR CHARACTERISTICS MEASUREMENTcccooveveevmeereresnnn. 3

B. GLOBAL MOTION PLANNINGcceceveteremienrrecereereeesereseeeeresereseresesessesssans 4

OI. SONAR SYSTEMoooeierirriireninnieeeieetesesessesesesessessssssssessseessessssasssssssassesesssonn 7
A, HARDWARE SYSTEMccovimrrintrreeeeeseneseeecsinceeseseseseseessesesessesssssseens 7

1. SONAT GTOUPINEovurviiririninieirieeneresisesesissrasssesesesstesss s sssssensenseenes 8

2. Range FINAING ..ot een 11

3. Interrupt COntrolcccveiviimiiieinrectrene et eaeeeeas 11

4. Data Transferccccccvverieinenreceeeeeree ettt et eete s eaes 12

B. BASIC SONAR FUNCTIONSoooiiiierrerereiriecsiteeeesteneseeseeeseseseesessens 12

1. DAESEANCE ...ovcuiriririiiiieiercreirieesetstse e s bseesese e eeeaas 12

2. Global Position Calculationsccceeeveeeeereeeerereeeeeresieeeneeescsesenenns 12

C. LINEAR FEATURE EXTRACTIONccooooierereecmeieeceeeeeeeevensessseesesnens 14

1. Least Squares Fittingcoceorerrvirnnneieneeeeeeeresee e 14

2. Finding ENAPOINEScccceeoieviniiienieiinirecte et cever e seseeeeas 16

3. Residual TESHINGcoceveveeireircecieirietee et seee e eeeenens 17

4. Beginning Line SEZMENtSccccevvuriveeienreenrerceeerceeesese s e 17

5. Ending Line SEgMENtscccooevevirenrvuemmenierereneere e e enes 18

IV. MML USER INTERFACEcccotrrtrmmntrteeneeere oo sesenesesees s sveneeessseenanen 19
A. GLOBAL CONFIGURATION CALCULATIONccceoevviviiieeeeeeeeenene 19

B. SONAR FUNCTIONSooiotiitrininreanneiesesssesetesssssessseesssesssesseseotessesesesnns 23

1. Enable SONar ...ttt 23

2. Disable SONATccoueiviieieiereietcrtrrr e ee e s 23

3. Get Sonar REIUINScccuiuieemieeiinieeerreseereee ettt eee e 23

4. Get Global SOnar REtUINScocveerueuerererereeeeesereeeeceseeeeee e eseseenas 24

5. Enable Linear Fitting sttt s et s bbbt 24

6. Disable Linear Fittingcccecevevieveruniecenieiereecesececceenesese e e sessaeens 24

7. Set Parameters In Linear Square Fittingccccecevivimeeeeveneenvenennen. 24

8. Enable Data LOgZINgccccoruruerueririreeeeceeeeeeesecetee et 25

9. Disable Data LOZEINGc.ooeverveviiinrrienreeeiereeecererce s eseeesee e seeeens 25

10. Set Logging INEIVAlcccoevuiivieireecerreeeeeeetec e ene 25

11. Transfer Raw Data To HOSEcccevvuireereereeeeieretecee et 26

12. Transfer Global Data To HOStccecevereemveeueeieeieeieeeee e e 26

13. Transfer Segment Data To HOSEcceveereeereeeeeienieeeeeeeeeseev e 26

C. DATALOGGING PROCEDUREooouerereeererererereeieeeeneeeeeereseeseeeeeesen 26

V. SONAR CHARACTERISTICS EXPERIMENT RESULTSccceceovveeurereeennn.. 29

vii

A, CASE] ettt seesaessesse e scsssasstosesaenssssessssesaessssasssessessassassassanns 30

B. CASE 2 ettt seerer et sstesese s sie e sessess s s et sh s b e b sr s s n s sr s ene s neas 31

C. CASE 3 .t eresiestessesse it bes s s e s s s s e ssesans reeveerresesanerans 33

VI. THEORY OF POLYGONScccoirtrtneceriniieniininsnsisssstesnss s esnssesssssssssassassas 37
A. " DISTANCE AND BISECTORSccooiiiiiiricineece e 37

B. POLYGONAL WORLDSccteitreirenrenieisetonessinsiisscsesesnesssnsssesssssssans 38

1. POLYZOMS ...ccrveueirieriririnisuiesiensaissnssssesssesssessssssessssssssnsassasesussssacsessens 38

2. SUDPOLYZONS ...ooviviriiriniitiienirenreee ettt 41

3. Distance from a Point to a Subpolygonccevivimemnininnenncnnee 43

4. Polygonal WOrldcoccienmniienniiieneeente e 44

VII. GLOBAL MOTION PLANNING / CONVEX DECOMPOSITION 47
A, PATH CLASS ottt sacienebsssetesss s ssse s s s ess s s e nesresasssnenesns 47

B. DECOMPOSITIONccoeverererenieneiiiniisninierisnissessessesssssssssssssssessessssessns 48

C. HOMOTOPIC DECOMPOSITION AND PATH REGIONc.cccoeeunnee. 51

D. CONVEX DECOMPOSITIONccccosiiimniiriiiinresesissnnsssssesesssessesessene 54

VIII. DIJKSTRA’S ALGORITHMcocoiiiiiciinincriinntniinsnesenseeseinesnnsssessiessessssssenees 57
A. CONNECTIVITY GRAPH OF THE WORLD ..., 57

B. ALGORITHM DESCRIPTIONcccocviiiimrminriirnnrenreesinnssnnsessesssencesnenenne 60

C. DATA STRUCTUREccovvicriiierecrerenitcstssssscssesissesnesasnssaessssssssesssssenes 61

D. IMPLEMENTATIONoooioieieicmscniincinsmntesscsssese s s essesssssssesaestsseene e 62

IX. ALL - PAIRS MINIMUM COST PATHS ALGORITHMcccccovminiieniennee 65
A. CONNECTIVITY GRAPH OF THE WORLDcccooooiiiiieieinenenieicnene 65

B. ALGORITHM DESCRIPTIONcccccoiiiiininirineririienissiessestesssssssessesanssens 69

C. DATA STRUCTUREcccoovictreeirtenercnresissisreisesssssessssasssssesssssessassassssseane 71

D. IMPLEMENTATIONcoooiiriiienicnincireiesisiiessensetnssseessssasssssssssssassassnenees 71

X. CONCLUSIONoooeiieirtiineseeseesestessetesessosissssissssssnessessessssassassassessssmesssasesnessosses 75
A, RESULTS ..o oeeectecetrrereeteeeneseesnestestenssissssnsssetsstsssssssssessssassssssssestsssesssssssnsns 75

1. Sonar Characteristics Measurementcccoeveerererieeseesiesienssnacnsssaneees 75

2. Global Motion Planningc..ceececeverevuirinieenveivesrenennessessessssessessessens 75
APPENDIX A. USER PROGRAMMSconiiiiiiiiniiiinininessissiesnsssestssssessesassssesias 77
APPENDIX B. PROGRAMMS’ RESULTScoooiitiietereinnsenesi et 91
LIST OF REFERENCESocoiitiieieeetnreeseeceistseiissssitessesnsnsssssasssssassestessesssssesssns 103
INITIAL DISTRIBUTION LIST ...coueeiiiiieiiiniiniintiinininniree st ss s sssssstsssssesassnes 105

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
- Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

LIST OF FIGURES

Robot’s Motion in a Known World.............oveonnono] et eeene 3
Motion Planning Problem..............ooovvmemeoreoeoooooooo, resreetetee e esans 4
YamabiCo SONATSceeueeerrerrunreeeieseesessseeeseseee s 7
Sonar Hardware Architectureu.vveeeeveesemeeeosroosoooooooooooooo 8
COMPOSIHON ...veovrte oottt ee e 13
Representation of a Line L Using 7 and aoovuevvveoovoooooooooo 15
Example of First COMPOSE............vuevverveeeeseereeseeseeeoooeoooeoooooooooooe 19
Example of Compose with Sonar REtUIT.............v.vooooeooooooon 21
Result of Compose on EXample.................ceeeeeemmmeeorrooooooooooooo o 22
Allowance in Linear Fitting Alorithmovvovvevooooeooooooo 29
CASE Lttt e 30
Case 1-Experiment RESUILSvveeveuevereerersseeeeoeeeooooooooeoooooo 31
CBSE 2.ttt ee e 32
Case 2-EXperiment RESUILScv...veveeeeeeeeeneeeeeeseeeesees oo 33
CASE 3.ttt e e oo 34
Case 3-EXperiment RESUILSvveveeereeeeeereseoeoeeoeoooeoeooooooooooon 35
EXamPple WOTIdoovumceeiieenieieeeteeeeeeesecees oo oo 38
NOIrmal POIYZON........couremermireeireeireeeeeeeeee e cees e 39
INVErted POLYZOM..........cuurueerennre e eeeeeeeeees e 40
Exterior Angle of 2 COnvex VErteXo.uwweeueemeemvoomoooosoeoooooooooooooo 40
CONVEX POLYZOMScoomvenceenretsceeeeeeceseeeeeeeeeee e eeoee e 41
CONCAVE POLYZONS........ccuueemeernnrerreieeeoeeeeseeeesessee s 41
A Rectilinear Polygonal World..................eeeumeemeemmemresooooooooo 42
Subpolygon Decomposition of Concave Polygons......ccouevveucreeeenn.. 43
PANS .ot 48
DECOMPOSIHONS........o..coonceereeeirnreerieeeeeeseese e eeesseee s 49
Paths in 2 Decomposed WOrld...............eeeeeeemevereesroooosoooooooo 50
A Path which is not Regularoocovvovoeoemereo 51
Oriented REZIONcuvueurururrenieceeeeeeeeeeesees oo 52
Path Region.........cccoceeevummrrrnereernane. teeeresaesesaraesniaee e nenesanas ST 53
Non-Orthogonal BOrdereeueeeveeeeeseeessosossseosooosoiooooooson.. 55
World DECOMPOSItION.........cevvrveeereereeneeeereeeeseeeses oo oo 57
Basic Connectivity GIAPN ... 58
Augmented Connectivity Grapheeeeeeeeevemvsmoooeeooooooeooooooooo 59
Dijkstra’s AIZOTIthINoveuuevurveieeeeoeeeeeeeeee oo 60
Dijkstra’s Data StUCHUIE..........evv.vvereeeeeeeeereeeeseesee oo 62
Dijkstra’s Example EXECUtIONoveveeeeeereeeseeseosooooeoooooeoooooo 63
A Decomposition and Its Basic Connectivity Graph.................oo............. 66
Addition for Augmented Connectivity Graph ..o, 68
All-Pairs Minimum Cost Paths algorithmooooovoooooooo 70
Cost Array - Initial MatriX «....ceeovveeeveeeeeieeeesemeeee e 72

ix

Figure 42:
Figure 43:
Figure 44:

Previous Array - Initial Matrix
Cost Array - Result Matrix
Previous Array - Result Matrix

..

..

..

I. INTRODUCTION

A. BACKGROUND

One of the ultimate goals in robotics is to develop autonomous robots. Specifically,
robots capable of successfully completing a task when provided instructions on what to do
but not how to do it. Potential uses for sensor based robotics in structured environments
abound. Increasingly capable autonomous mobile robot platforms are being developed to
handle a myriad of hazardous duty assignments. While manufacturing tasks dominate the
area of robotic applications, useful advances have been made in the areas of waste
management, space exploration, undersea work, assistance for the disabled and medical
surgery. Other examples include factory delivery systems, toxic waste disposal, pipeline
inspections, etc. Several U.S. government-sponsored efforts are underway for building
systems for military applications such as combating, handling ammunition, transporting
material, underwater search and inspection operations, and other dangerous tasks currently
performed by humans. Therefore, studying intelligent sensor-based systems is one of the
major areas in the field of robotics today. In order to achieve a mission, sensors are used for
data acquisition, a strategy based on the environment and state of the robot is chosen, and
sensing is then integrated into the planning process. Hence, the global path planning
system, local motion planning strategies, and sensing system are integrated into one

coherent system.

B. OVERVIEW

1. Sonar

Sonars are used to determine location and recognize obstacles to be avoided. The
sonar data are the inputs to several functions of a high level language called MML (model
based mobile robot language), which is the driving force behind the robot Yamabico.

Although Yamabico may have precise knowledge of its location in a given

environment, it is only capable of detecting the presence of unexpected obstacles in its path

using its 12 sonars. Yamabico can move at a speed up to 65 centimeters per second in a
translational motion, forward or backwards.

In motion planning we attempt to apply the sonar system m parallel, so that
combinifng the two techniques leads to a better “understanding” of the world and thus
reduces the robot’s positional errors. Thus, sonar accuracy is very important as it affects the

efficiency of motion planning and obstacle avoidance.

2. Global Motion Planning
Many of the robot’s tasks require motion. Deciding how to move from one location
to another is known as the motion planning problem. In motion planning, not only is

position important, but the orientation and curvature of the vehicle are important as it

follows the path. These elements are represented in the configuration tuple (x,y,8,x) .
Hence, the motion planning problem can be stated: How can a robot decide what motions
to perform in order to move from one configuration to another?

Motion planning rather than path planning is used, because vehicles considered
here are not points, but rigid bodies. In path planning, the result is a series of positions
which must be followed by the vehicle. For an autonomous vehicle, planning motions
which avoid known and unknown objects in its environment is the most fundamental
functionality. For example, the mission of mine detection and clearance could not be
successful unless the motion planning is solved. How should the data be structured to
capture the topology of the operating environment, enable efficient processing of data,
verify the robot location, and modify (if necessary) the global path plan? Consistency in
both global and local plans can be achieved through constant collection and management
of sensor data and using the data to guide the robot actions. All robot actions must be based

on the status of the robot in conjunction with its environment.

II. PROBLEM STATEMENTS

A. SONAR CHARACTERISTICS MEASUREMENT

The Sonar Testing problem is to examine the precision of the sonar interpretation
data, obtained by the current Linear Fitting Algorithm. Theoretical study, extensive
simulations and testing are required to make this determination. The methodology of this
thesis is to program the robot’s motion in an known world, (Figure 1.), and then estimate
how well it understands this world. The experiments concentrate primarily on the left and

right sonars.

Wall
[w
A

Sonar #7

— <

Sonar #5

“Wall | L]

Figure 1. Robot’s Motion in 2 Known World

Motion planning methods and algorithms need accurate data from the robot’s sonar
system. This enables verification that the robot is at the calculated position relative to the
world’s objects (polygons). If there is a difference between the actual and computed

positions the software calculates the positional error.

The Linear Fitting Algorithm makes significant contributions toward solving the
robot motion problem, (see Chapter V). Applying the theory in robotics, the sonar’s returns
are inputs to the algorithm, and the result is an interpretation of the senééd World compared
to the known world. How well this combination of hardware and software resolves the
disparity between the sensed world and known world is the criterion for the optimal sonar

configuration.

B. GLOBAL MOTION PLANNING

The Global Motion Planning problem is, given the robot’s operating environment
(world), to finding the optimal path class.

The framework of the motion planning problem is set in a two dimensional,
rectilinear world. The objective is to quickly and safely navigate an autonomous vehicle
through free space from an initial configuration to a goal configuration using smooth

motions (Figure 2.). A two dimensional, rectilinear world is used, since that type of world

Figure 2. Motion Planning Problem

closely models the interior of most office buildings. A rectilinear world is one in which all

edges are parallel to either the global coordinate frame x-axis or y-axis. Furthermore, all

obstacles are rectangles. A configuration (x,y,6,x) is a tuple which describes the two
dimensional position, the orientation and the curvature of the vehicle. Smooth motions are
those trajectories which possess continuous tangents and curvatures. Free space is that part
of the world in which no obstacle is located.

The following assumptions are used throughout this thesis:

* The vehicle and all objects in the robot’s environment are rigid bodies.

* The robot has complete knowledge of the environment in which it is operating.
However, the use of external references to guide its motion other than the physical

characteristics of the walls will not be used.

* The world is modeled as a planar rectilinear world with obstacles.

* The obstacles do not intersect or touch each other.

* Walls in the robot’s environment are always rectilinear, as are found in most office
buildings.

* All obstacles’ faces are perpendicular to the plane in which the robot moves. This

assumption is required to assure a good sensor return from all objects.

* Although the robot will be operating in a three dimensional environment, it is
assumed that the model reflects the projection of the obstacles onto the plane of the

floor on which the robot moves.
e All obstacles in the environment are immobile.

* Finally, it is assumed that the robot’s free space is bounded by an inverted

rectilinear polygon.

III. SONAR SYSTEM

A. HARDWARE SYSTEM B

Yamabico’s sonar hardware is extremely efficient because a dedicated sonar board
with a microprocessor controls the sonar sensors [LOC94]. Yamabico’s main central
processing unit is interrupted only when data becomes available from the sonar array. The
sonar system provides user interface functions that control Yamabico’s array of sonar range
finders. At any point within a user’s program, any of the 12 sonars may be enabled or
disabled. This allows the user to operate a given sonar only when necessary for a particular
application. When needed, the sonar system returns the latest reading of a specified sonar
out of the twelve. This system design is far better than the primitive one in which a user
must wait 30 milliseconds after he/she issues a command. A user’s program can also be
forced to “busy wait” until some sonar-based condition is satisfied. This feature is
particularly valuable for obstacle avoidance. For example, a user’s program could be
written to wait until the forward looking sonar’s range is less than distance d, then stop. A

block diagram of the sonar system is provided in Figure 3.

jf < ;
Forward

8 V[. vi(176
4 A)

1 2 9

Figure 3. Yamabico Sonars

Figure 4. shows the current hardware configuration of Yamabico.

0 >
2 > TR Command
8 [>— Board
1 Status
11 B>
Data 1
6 >—
4 TR Data 2
—-
= =) e
5 2
Data 4 :
1 >_
Sonar Control
3 > R > Daughtercard Central
9 —~—Board processor
10> 3
BIM
VME Mothercard

Figure 4. Sonar Hardware Architecture

1. Sonar Grouping
In order to reduce sampling time the sonars are operated in logical groups of four.
The sonars of a logical group are all pulsed simultaneously and thus the sampling time is
reduced by a factor of four as compared to individual firing of the sonars. The sonars of
each logical group are oriented in such a way as to:
- prevent mutual interference
- provide a “look” in all four directions from each group
- present a similar aspect from each sonar during a rotational scan
Thus, logical group O consists of sonars 0, 2, 5 and 7 (see Figure 3.), group 1

consists of sonars 1, 3, 4 and 6; group 2 consists of sonars 8, 9, 10 and 11; (see page 9) and

group 3 is a “virtual” group which consists of four permanent test values. The sonars of a

group are symmetric about the robot’s axis of rotation.

TABLE 1: Sonar Mnemonics

Mnenonic Sonar Group
S000 0 0
S030 3 1
S060 10 2
S090 7 0
S120 6 1
S150 9 2
$180 2 0
S210 1 1
S240 8 2
S270 8 2
S300 4 1
S330 11 2

In addition to being logically grouped, the sonars are also physically grouped (see
Figure 4.). The physical grouping of the sonars is made to distribute the electrical load over
the driver boards evenly and thus minimize any electrical transients associated with
operation of the sonar. The physical grouping connects sonars 0, 2, 8 and 11 to driver/
amplifier board 1; sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 to board 3. The
reader will note that pairs of sonars from logical groups are assigned to physical groups, for
example, sonars 0 and 2 from logical group 0 are assigned to physical group (driver/

amplifier board) 1.

Initial design of the control circuitry was based on two primary parameters
[BYR94]: (1) a desired maximum range of 400 centimeter and (2) a pulse width of 1
millisecond. Assuming a speed of sound in air, at sea level, of 340 meters/second we may

calculate a round-trip time:

400 cm

34000 om/sec X2 = 23.53 msec (Eq. 1)

round trip time =

This round trip time is the period during which a valid echo may be received and is
referred to as the receive gate. This interval is rounded up to 24 milliseconds and is derived
by division of the sonar system’s 2 MHz clock to ensure that the ;eceiver is not falsely
triggered by a direct path reception from it’s adjacent transmitter, we opt to disable the
receiver until the transmit pulse is complete. This will have the disadvantage of setting a
minimum range equal to half the distance sound would travel in the time of a transmit pulse.

minimum range = 34000 cm./sec. X 1 msec. X 0.5 = 17 cm. (Eq. 2)

This minimum range lies approximately 9 centimeters outside the periphery of the
robot. In order to allow the measurement of objects up to the periphery of the robot, the
pulse width was decreased to 0.5 milliseconds thus reducing the minimum range to 8.5
centimeters.

In actual practice, the minimum range is set by firmware to 9.6 centimeters, the
additional distance being due to time allotted for switching and settling in the circuitry.

All sonars of a logical group are pulsed simultaneously. Which groups are fired is
determined by the value of the corresponding bit in the command register of the sonar
control board, which in turn is set by the user with an MML function (Figure 4.). Hence, if
bit 2 is set to 1 then group 2 sonars will be pulsed. If more than one group is selected to be
pulsed, the sonar control board will pulse the first group on the list, and when the data from
that pulse has been read from the fourth data register the sonar control board will proceed
to the next group and pulse it, and so on in round robin fashion. Groups with their control
bit set to 0 will not be pulsed. The sampling rate can thus be as high as 41 Hz with only one
group enabled (based on a 24 millisecond read gate as determined in Equation 3.2) and will

be halved for each additional group enabled. At a nominal robot speed of 30 centimeters

10

per second. this sampling rate could provide an updated range within 0.75 centimeter of
travel, exceeding our desired positional accuracy of 1 centimeter. Of course, real
performance will be affected by any delay in reading the data reéi‘sters due to other
demandé on the central processor (processing the sonar data, controlling motion, etc.).

2. Range Finding

There are four 16 bit data registers on the sonar control board, one for each of the
four sonars in a logical group. When the transmit pulse is sent to the driver/amplifier boards
a counter is started which increments each of the data registers every 6 microseconds. This
time period is equivalent to a range of 1.02 millimeter:

range = 340000 mm/sec X 6 microsec X 0.5 = 1.02 mm (Eq- 3)

The incrementing of a particular data register continues until an echo is received or
the range gate times out. The first 12 bits of the data register are allotted for range
accumulation, thus allowing for a maximum range of 4.177 meters (4095 x 1.02 mm.). If
the range gate should time out before an echo is received, the high bit of the over ranged
sonar’s data register is set to 1. This is the “over range” bit and is used to signal the ensuing
software that no echo was received. Bits 12, 13 and 14 of the data registers are not used.
When the ranging cycle is complete, the appropriate group number is written into bits 4 and
5 of the status register and the “ready” bit, bit 7 of the status register, is set to 1. The ready
bit is used as a flag when operating in the polled mode; i.e. without interrupts.

3. Interrupt Control

The sonar control board is actually a daughtercard which rides on a VME bus
mothercard. The mothercard carries address decoders, bus drivers and interrupt control
circuitry in the Bus Interface Module (BIM). B

When the sonar has completed a ranging cycle an interrupt request is provided to
the BIM. The BIM’s control register holds information which determines whether an
interrupt is to be generated or not, and if so which interrupt level is to be generated.
Presuming an interrupt is generated, when the correct acknowledgment returns on the
address lines the BIM’s vector register provides the vector table entry where the central

processor may find the vector to the interrupt handler. The correct interrupt level, the

11

interrupt enable bit and interrupt vector are loaded to the BIM during software
initialization.

4. Data Transfer

léach of the data registers is individually addressed on the VME bﬁs by a VME short
address, as is the status register. Transferral of the data is extremely straightforward. The
interrupt handler simply reads the correct register, masks out the unwanted bits and writes
the data to the stack. When the last data register is read, the sonar system resets the data
registers and commences a ranging cycle on the next sonar group in it’s round robin. The

system will continue to operate autonomously until all the sonars are disabled.

B. BASIC SONAR FUNCTIONS

1. Distance

There are two functions available to return sonar values. One function, sonar() will
return the range from the sonar to the object it is getting the return from. If there is no return,
then a value of infinity is assigned, and for Yamabico this value is 999999. The infinity
value is used for trouble shooting purposes, to detect whether or not there are instances of
no return from objects at a distance of less than 4 meters. The second range function
available is global(), and this will return the x,y coordinates of where the return was
detected in the world that the vehicle is in. This is useful in the vehicle making a map of its
world with obstacles in it.

2. Global Position Calculations

By utilizing the compose function seen in Figure 5., we can determine the actual

point in a 2D coordinate system. Let the following equations represent q; an qj,

a= (v 0" (Eq. 4)

9= (X ¥y, ez)T (Eq. 5)

12

The composition of these transformations is defined as

X +x,c086, —y,sin6,
g; 0 ¢ =| ¥y +X,5in6, +y,cos,

0, +6, (Eq. 6)

X2

Y2
X

yI

Figure 5. Composition

This functionality is extremely usefully in dynamically configuring new paths from our
original paths. We can dynamically define another path depending on your position and the
direction of your vehicle. For the sonar functions, it allows much more modularity to the
code. The code is reusable, since the only thing unique to Yamabico are the actual sonar

positions on the robot.

13

C. LINEAR FEATURE EXTRACTION

In addition to simple range and point position data, the sonar system recognizes the
linear features of an orthogonal world. To do so we must provide some method for
recognizing sets of data points which form the linear feature and a method for finding and
describing the line segment that best fits that set of data points. This is accomplished in
reverse fashion, i.e. we presume the data we are receiving belongs to such a set and
continuously modify a descriptive line segment to a best fit of the data using a least squares
fitting algorithm. This line segment continues to grow until the incoming data or certain

measures of the line segment indicate that the line segment should be ended and a new one

started.
1. Least Squares Fitting
Suppose we have collected n consecutive valid data points in a local coordinate

system, (..., Pp), Where p; = (x;, ;) for i = 1....,n. We obtain the moments ;;, of the set

of points
n
m, = fo,-y"i (0<j, k<2,andj+k<2) (Eq. 7)

J
i=1

Notice that my, = n. The centroid C is given by

c= (20702 (u,p) (Eq. 8)

Moy Moo

The secondary moments around the centroid are given by

- (m10)2
M= (xmi)? = myy— (Eq. 9)
20 l=21 X—H) = my o, q
. m,,m
Mugz (x;-1) (}’,'—lly) = m]]"(_;‘z‘(;gl) (Eq 10)
i=1
™ 2 (mgy)?
M= (;-1)" = my- e (Eq. 11)

i=1

14

We adopt the parametric representation (r,or) of a line with constants r and o, If a

point p = (x,y) satisfies an equation
r = xcosd + ysino (-n/2<a<n/2) (Eq. 12)
then the point p is on a line L whose normal has an orientation o and whose distance from
the origin is r (Figure 6.). This method has an advantage in expressing lines that are
perpendicular to the X axis. The point-slope method, where y = mx + b, is incapable of

representing such a case (m = o, b is undefined).

p= (Xi’ yl)
\ = residual

X
Figure 6. Representation of a Line L Using r and o

The residual of point p; = (x;, y;) and the line L = (r,00) is X;CO80L +y,sin0L—7.
Therefore, the sum of the squares of all residuals is
S = Y (r-xcosa-y,sina)’ , (Eq. 13)
i=1
The line which best fits the set of points is supposed to minimize S. Thus the

optimum line (r,0t) must satisfy

ds _ ds _
S =%=0 (Eq. 14)
Thus,
15

g_f = 22 (r—=x,coso—y;sin0r) (Eq. 15)

i=1
= Z[rZI—(inJcosa—(ZyiJsina) ‘ (Eq. 16)
i=1 Ni=1 i=1
= 2 (rmgy— mCOS L — Mg, SN 0L) (Eq. 17)
=0
and

m m
r= —Ccos0+ —2sinG = P, COSOL+ L Sin _ (Eq. 18)
Moo Moo ¢

where r may be negative. Substituting r in Equation 13 by Equation 18,

S = z ((x;—) cosa+ (y;—W,) sino) 2 (Eq. 19)
i=1
Finally,
gS& = 22 ((x;—n,) cosa+ (y;—) sin0r) (= (x;— W) sino+ (y;— H,) cosa) (Eq. 20)

i=1

= 22((y,.—uy)z— (x;~ 1) 2)sinoccosoc+22 (-1 (7= 1)) (cos?a. - sin2a) (Eq.21)

i=1 i=1

= (Mg, — My) sin20 + 2M;; cos20 (Eq. 22)
=0
Therefore
o = Aan (M, (Mo~ M) (Eq. 23)

2
Equation 18 and Equation 23 are the solutions for the line parameters generated by

a least squares fit.

2. Finding Endpoints
The residual of a point p; = (x;, ¥;) is

8; = (M,—x;) coso+ (M, —y,) sino (Eq. 24)

16

Therefore, the projection, p'; of the point p; onto the major axis is
P = (x;+38;cosa, y, +8;sinex) B (Eq. 25)

We will use p', and p', as estimates of the endpoints of the line segment L obtained
from the set p of data points.

3. Residual Testing

We wish to do some pre-filtering of the data in order to remove points from the data
stream which are clearly not colinear with the existing points of set p. In this way we can
often detect the end of a line segment before having to perform the considerable
computations necessary to include it in the line. If the point satisfies

8,,, <max (o xCl, C2) (Eq. 26)

where C1 and C2 are positive constants (typically, C1 = 0.02 and C2 = 5.0) then the point
can be included in the current line segment. C2 at 5.0 allows for more residual at a distance
greater than 250 centimeters, up to 8 centimeters at a distance of 4 meters.

4. Beginning Line Segments

First, the sonar returns must fall within their physical constraints. For Yamabico,
acceptable return values fall between 9.3 centimeters and 409.0 centimeters. If a sonar
return is not within this range, a segment will be generated if there have been at least 10
previous returns that met all requirements of the least square fitting to qualify as a segment.

Secondly, if it is the first return, you simply store it as the starting point and proceed
with the next return.

With the line segment established, collection and testing of the additional data
points can proceed. If the data point passes the residual testing, the moments and test values
for the line are calculated including the new point. Should that test pass, the line segment
parameters (endpoints, length, etc.) are updated and the system proceeds to gather a new

data point.

17

5. Ending Line Segments
There are three ways in which a line segment is ended. It may be ended by the
failure of data points to pass the residual testing, explicitly ended by the sonar being

disabled; or by the sonar return being outside the acceptable range.

18

IV. MML USER INTERFACE

A. GLOBAL CONFIGURATION CALCULATION

The compose function is implemented in a sonar function called calculate _global().
It applies the compose function twice [BYR94]. The first time the compose function is used
to determine the actual position of the sonar in the world being navigated by the vehicle, as
seen in Figure 7. In this example Yamabico is at coordinates (80,40), in the “world

coordinates”. The sonars position on the robot is (9.5, -19.75). By applying the compose

Yo

40 __1

80

Figure 7. Example of First Compose

function,

19

X, +X,c088, —y,sind;
q,04 = +X,sin@; +y,cos6,

6,+6,

we determine the position of the sonar in “world coordinates”. In this case it would be:

world sonar x coordinate = 100.68 = 80 + 9.5*cos(n/4) - (-19.75*sin(7t/4))
world sonar y coordinate = 32.74 = 40 + 9.5*sin(n/4) + (-19.75*cos(n/4))
world sonar theta = —t/4 = /4 + -(n/2).

The second time compose is applied it determines where the sonar return is in the

world being navigated by the robot, as in Figure 8.
In this case we apply the compose function and the results are:

sonar x coordinate from robot = 171.42 = 100.68 + 35*cos(-n/4) - 0*sin(-1t/4)
sonar y coordinate from robot = -37.94 = 32.74 + 35*sin(-1/4) + 0*cos(-1/4)

which gives us the point in Figure 9.

By knowing where each sonar is on the vehicle and knowing where the vehicles
position is, we can consistently determine where the object being detected is in relation to
the world that Yamabico is in. This is needed so that a vehicle can dynamically map out the

world.

20

40 __1

80

Figure 8. Example of Compose with Sonar Réturn

21

40—

80

Figure 9. Result of Compose on Example

22

B. SONAR FUNCTIONS

Sonar functions are found in sonarcard.c, sonarmath.c, sonarioc, sonarsys.c, and
sonarlog:c, which are part of Yamabico’s MML, the name for the entire set of code for
Yamabcio. The following are those functions which are available for use in the user.c and

a brief description.

1. Enable Sonar
Syntax: void enable_linear_fitting(n)
int n;
Description:

The user calls this function passing in the sonar that is to be enabled. On Yamabico
there are 12 available sonars. Each sonar should be enabled individually.
2. Disable Sonar
Syntax: void disable_sonar(n)
int n;
Description:
The user calls this function passing in the sonar that is to be disabled. On Yamabico
there are 12 available sonars. Each sonar should be enabled individually.
3. Get Sonar Returns |
Syntax: double sonar(n)
int n;
Description:
The user calls this function and passes in the sonar number that range data is wanted
from. If no echo is received, then an INFINITY(1.0e6) is returned. If the distance is less
than 10 cm, then a 0 is returned. If the sonar return is between 9 cm to 409 cm, then that

floating point number will be returned in centimeters.

23

4. Get Global Sonar Returns
Syntax: posit global(n)
int n;
Description:

The user calls this function and passes in the sonar number that global range data is
wanted from. The function will return a structure of type posit, which contains gx and gy,

the global x and y coordinates.

5. Enable Linear Fitting
Syntax: void enable_linear_fitting(n)
int n;
Description:

The user calls this function and passes in the sonar number, so that linear fitting is
applied to sonar returns. This will enable the robot to determine whether sonar returns are
walls, or some type of linear surface.

6. Disable Linear Fitting

Syntax: void disable_linear_fitting(n)
intn;
Description:

The user calls this function and passes in the sonar that linear fitting is to be disabled
on.

7. Set Parameters In Linear Square Fitting

Syntax: void set_sonar_parameters(cl, c2)
float c1,c2;
Description:

Allows the user to adjust constants which control the linear fitting algorithm. C1 is

a multiplier to allow more leniency for greater sonar ranges, and C2 will adjust the

24

tolerance allowed for sonar ranges being off the linear line being collected. Both are used
to determine if an individual data point is usable for the algorithm. The default values are
initialized to 0.02 and 5.0 respectively. For more information on C1 ané C2 refer to Chapter
V.Cof tflis thesis. |
8. Enable Data Logging
Syntax:

void enable_data_logging(n,filetype,filenumber)
int n,filetype filenumber;
Description:

The user calls this function and passes in the sonar, the type of file data to be
collected, and which file array (0, 1, 2, or 3) to collect the data in. There are three types of
file data that can be collected. The first is raw data, the second is global data, and the third
is segment data.

9. Disable Data Logging

Syntax: void disable_data_logging(n,filetype)
int n, filetype
Description:

The user calls this function and passes in the sonar, the type of file data to collected,
and which file array (0, 1, 2, or 3).The type of file data that is to cease being collected is
designated, either raw data, global data, or segment data.

10. Set Logging Interval

Syntax: void set_log_interval(n,d)
intn, d;
Description:

The user calls this function passing an integer designating how often the sonar data
being collected should be written to the file collecting the data. The default value is 13,

which for a speed of 30 centimeters per second and sonar sampling time of 25 milliseconds.

25

would record a data point approximately every 10 cm. To collect all sonar data you pass in
1, so that every sonar return is recorded.
11. Transfer Raw Data To Host

Syntax: void xfer_raw_to_host(filenumber,filename)
int filenumber, filename;
Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the name
of the file that is to be created at the workstation to contain the raw sonar data collected.
12. Transfer Global Data To Host
Syntax: void xfer_global_to_host(filenumber,filename)
int filenumber, filename;
Description:
The user calls this function and passes in the file number (0, 1, 2, or 3) and the name
of the file that is to be created at the workstation to contain the global sonar data collected.
13. Transfer Segment Data To Host
Syntax: void xfer_segment_to_host(filenumber, filename)
int filenumber, filename;
Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the name

of the file that is to be created at the workstation to contain the segment sonar data collected

C. DATA LOGGING PROCEDURE

After Yamabico has completed its mission, recorded sonar data can be downloaded
and checked to ensure that the hardware is performing optimally. The data that can be
logged includes global sonar data, raw sonar data, segment sonar data, and the motion trace
data of the robot. Once the robot has stopped, the data designated to be logged in user.c can

now be downloaded. A message on the powerbook will instruct the user to connect the

26

phone cable to the robot. Once the phone line is connected, the user must hit the space bar,
then the character g, and the space bar once more. The data will then be downloaded to the
workstation. Once the download is completed, a bell sound will be heard from the

powerbobk on the robot. This is required for each type of data being logged.

27

28

V. SONAR CHARACTERISTICS EXPERIMENT RESULTS

To successfully use sonars in motion planning and obstacle avoidance, it is
necessary to understand what sonar data you can expect in distinct rectilinear
configurations. This allows determination of which cases will successfully avoid obstacles,
and which cases will be unable to determine a safe path given only input from the sonars.

Several motion planning experiments were conducted in Spanagel Hall at the Naval
Postgraduate School. During all cases the left and right sonars (#5, #7) were enabled. This
provided complete scans of the world in which the robot was moving. The Linear Fitting
Algorithm constructs segments from individual sonar returns. »»

The Linear Fitting Algorithm has 5 cm allowance. This means, a segment is
continually generated until the new return’s distance (image) to the already formed

segment exceeds the 5 cm allowance of the algorithm (Figure 10.).

Segment

Sonarreturn = mm

Wall
AR

>5cm

Figure 10. Allowance in Linear Fitting Algorithm

29

A.CASE1

The robot moves using its left and right sonars in a translational scan as in Figure
11. We expect to receive accurate data to recognize the wall. The Linear Fitting Algorithm
recognizes two walls. More importantly, the locations of the doorway cavities are correctly

determined.

Wall
w
A

Sonar #7

— <

Sonar #5

\J
Wall L—'I

Figure 11. Case 1

30

Thus, in case 1 the robot’s understanding of the world is precise and the result

exhibits good linearity. Figure 12. shows the experiment results.

y axis
2800 T ; ; T ? : "
: : ; : GLOBAL.5.Sep122124 .
2600F------... R IREERRR [EERRRE "R’A’“'.'S‘.‘SQP'}.22'1'24‘""“"
: A ; . GLOBALT7.Seépl2Zjl24 -
2400F ..., R I P St 'RAW.7.Sepl22124’ — |
: : : © 'world5th.pm’ —
2200L T PO S “SEGMENT.5.Sep122124° o
: 1 ; ';snsu*sﬂm.?.s@eplzzl?%v +
2000F........ e Lo e e e :.‘..i
.’?’,‘I : . . 7
1800h........ D 'L.'&F L SN SO R 3 jf
16004 -----... j
1400 cven.. S S 0 ';]
T R O . e -
: 1 : s : : .
1000 i i i i i i :
-100 -50 0 50 100 150 200 250 300
X axis
Sun Jan 21 20:39:37 1996
Figure 12. Case 1-Experiment Results
B. CASE 2

as depicted in Figure 13. The robot is in a translational scan of a wall which ends in a

corner. We expect results that will not accurately depict the corner.

Case 2 is designed to observe the behavior of the “EnableLinearFitting” function,
|

|

‘ 31

Segment —

Sonar return == Wall
R
=
<
0 Sonar

B —
y-axis

Figure 13. Case 2

The robot moves parallel to the wall. Prior to reaching the corner, many sonar
returns contributed to the segment. A sonar return immediately after the robot passed the
corner was added to the segment. This is within the 5 cm allowance. However, the accuracy
of the generated line segment is not significantly affected. The experiment results is shown

in Figure 14.

32

y axis
200 T - T T T T -
: : ! PLOBAL.5.Sep162337 -
¥ ssol..... SRR IOUR e, ;... BAW.5.Sep162337’ — |
: : : - {LOBAL.7?. Sepl62337
: : : : 'RAW 7. Sep162337'——
800¢F--------. worldsth cm —
: : fSEaHENT 5. Sep162337‘-
: : : ?SE:MENT 7. Sep162337’*
7504 -....... RREEELRTEY FEPPRRPRS e LR L
700F-----... t
650F........ e i e Y R P RIS ST
P O N e, - b
55O eeeeeiienn il }.”.H.ﬂ ?.”.”.@ é
-100 ~50 50 100 150 200 250 300
X axis

Sun Jan 21 20:52:44 1996

Figure 14. Case 2-Experiment Results

C. CASE 3

The robot uses its right sonar in a translational scan of a corner in a situation shown
in Figure 15. The expected results may not accurately depict the corner due to the low

amount of reflection which distorts the representation of the angle of the wall.

33

Wall Segment —

Sonar return w=

X-axis

Sonar

y-axis

Figure 15. Case 3

The actual results showed the expected angular distortion. Some sonar returns from
the wall are received before the robot’s y-coordinate reaches the y-coordinate of the corner.
Next, as the robot move parallel to the wall we get more sonar returns. These returns along
with the prior ones, generate a first segment.

Then, another segment is generated right after the Linear Fitting Algorithm’s
allowance prohibits the first segment to continue. The two segments together give us a

bended representation of the wall. The experiment results is shown in Figure 16.

34

1150

1100

1050

1000

950

900

GLOBAL.5.Sep162

.’RAW.5.Sepl623
GLOBAL.7.Sepl62
’RAW.7.Sepl1623
""" U rworld5th:
GMENT.5.Sepl1623

GMENT.7.8epl16238

-100

=50

50

Figure 16. Case 3-Experiment Results

35

36

VI. THEORY OF POLYGONS

This chapter presents definitions used in the development of the theory and
includes’the concepts of polygons, subpolygons, and rectilinear worlds. Basic terminology
and definitions, which form the basis of the discussions to follow, are now covered
[KAN9S5a] [KAN9Sc].

A. DISTANCE AND BISECTORS

We assume a global two-dimensional Cartesian coordinate system in a plane.
Distances will be measured as Euclidean distance. The distance d(p,q) between two

points p = (x,,7,) and g = (xp¥,) is defined by the usual L, norm:

dp.g) = J(x,-x)"+ (3,7, (Eq. 27)

Assume there are n(n>2) points in a plane that make up the world, w.
W= {p; ... P,} - (Eq. 28)

The bisector of two points is a straight line which bisects and is perpendicular to a

line connecting the two points. A bisector bs(p, p) of points p, and p; with

‘1<i,j<n,i#j is defined as
bs(p,p) = {p'dp.p) =dp,p)} (Eq. 29)

Bisectors play important roles in this theory in several ways. Obviously, bs(p,, p) isaline
for every pair (p,p;) of points.

Voronoi regions are those regions in which any point in the region is closer to an

obstacle than any other obstacle. As is well-known, the Voronoi region V(p) of a point p,

with 1<i<n isdefined as

37

Vip) = {p (V) d(, p)) < d(p, Pj)} (Eq 30)
B. POLYGONAL WORLDS

Throughout this discussion we will use the rectilinear world illustrated in Figure 17.

Figure 17. Example World

as a concrete example of the concepts developed herein. Note that the inner white regions
indicate areas in free space while the darker areas indicate the rectilinear obstacles.
1. Polygons

Let a polygon, T, be defined by an ordered circular list of vertices, located in a two

dimensional plane, %’ , satisfying the following conditions:
i) any three consecutive points in the sequence are not colinear,

ii) two distinct edges (v,v;,,) and (v,v;,,) do nothave intersections except

in the case that they share a common end point.

" Therefore, polygon, T, is defined as:

I'= (v, ...,v),123 (Eq. 31)

38

where T consists of the set of points which are either on the boundary of T or in the interior
of T'. The boundary of the polygon I', denoted oI", consists of those points of a straight
edge connecting the vertices in order. The last vertex, v,, is connected to the first vertex to
close the directed loop. In this theory, free space will always exist to the right of the directed
boundary loop. The interior of I', denoted Inz(T) , is defined as the set of points to the

left of the boundary. The exterior of I", denoted Free(T") , is defined as the set of points

to the right of the boundary and can therefore be defined as %*-T . A normal polygon is

a polygon whose ordered list of vertices produces a counterclockwise boundary loop.

SeeFigure 18. Normal polygons will therefore represent obstacles inside the boundaries of

Exterior

V4

A4

Free Space

Figure 18. Normal Polygon

the world. An inverted polygon is a polygon whose ordered list of vertices produces a
clockwise directed boundary loop. See Figure 19. An inverted polygon serves as the outer
boundary of the world. Recall that an assumption used throughout is that the world is
bounded by an.outer inverted polygon. A rectilinear polygon is a polygon in which every
edge is paralle] to either the global x or y orthogonal axes.

Definitions of concave and convex with regard to vertices and polygons are covered

here. The exterior angle will serve as a measure to determine whether a vertex is concave

39

Exterior

Free Space

Figure 19. Inverted Polygon

or convex. (See20..)Let w(v,v,,,) representthe direction in global coordinates from v,

\'%
W (vy, V3) 3
82 Pl - W(vl’ VZ)
ﬁ 7 -
e
V2
Vi

Figure 20. Exterior Angle of a Convex Vertex

to v,,, . The exterior angle, 5, , induced at the itk vertex, v, , is defined as:
. = normalize (W (v, v,) =V (v;_, V) (Eq. 32)
Note that the difference between the directions is normalized to fall within (-nt,m] . A

vertex, v, , is said to be a convex vertex if §,>0 . Otherwise, the vertex is said to be a

concave vertex. A polygon is said to be a convex polygon if all of its vertices are convex,

40

otherwise it is a concave polygon. For more details on the properties of polygons see [30].
Several examples are presented in the Figures below. Figure 21. shows examples of convex

polygons, while Figure 22. shows examples of concave polygons.

neo &)

Figure 21. Convex Polygons

L L

Horseshoe L

Figure 22. Concave Polygons
2. Subpolygons
Let, T = (vj,..,v),123 be a polygon. It is desired to decompose T into

smaller pieces, called subpolygons. At this point the decomposition is dealing with
decomposing polygons into subpolygons and is not a decomposition of free space. It is,

however, a step in the future process of free space decomposition.
If the polygon T is convex, i.e., if all of the vertices are convex, we stipulate that
the polygon T itself is a unique subpolygon in I'. If T is concave, i.e., if there is at least

one concave vertex in T, the polygon can be broken up into one or more subpolygons. In

41

that case, the first vertex in the subsequence of vertices defining a subpolygon is set as one
of the concave vertices. The subsequence continues until it encounters another concave
vertex, which becomes the last vertex in the subpolygon’s defining subsequence. A

subsequence

Y= (VpVyup oo V) tSu (Eq. 33)

of T is said to be a subpolygon of TI', if v,and v, are concave and if all the vertices

V,.p» -V, ; areconvex.v, and v, are said to be the end-vertices of the subpolygon T".

In a special case where there is only one concave vertex v, in T,
(Vs - Vp Vy) (Eqg. 34)

is the unique subpolygon.

Figure 23. shows the decomposition of the polygons in the example world

Figure 23. A Rectilinear Polygonal World

into subpolygons. Note that T, , which is a concave polygon, consists of six subpolygons.

42

The encompassing shape of each subpolygon that makes up I'; is shown using a dotted line

with arrowhead ends. The other convex polygons consist of only one subpolygon each.

Additional examples of polygonal decomposition into subpolygons are given in Figure 24.

Horseshoe

Figure 24. Subpolygon Decomposition of Concave Polygons

The polygon on the left of the figure consists of two subpolygons. The polygon on the right

of the figure consists of only one subpolygon.

Lemma 1: Any polygon T is uniquely divided into a finite number of subpolygons

(Y1 Yo -0 ¥p) (Eq. 35)

with keeping the order of occurrences of vertices in T . Each convex vertex v in T belongs
to one and only one subpolygon.

If two subpolygons y and y share the same end-vertex, they are said to be adjacent

and we write adj(y,y) . For example, in Figure 23., vy, is adjacent to y,. Also, s 1S

adjacent to vy, . However, v, is not adjacent to v, .

3. Distance from a Point to a Subpolygon
In a polygonal world W, let p be a point in its free space and y one of the
subpolygons in W respectively. Then d(p,y) means the minimal visible distance from p

to y.If p and vy are not visible to each other in this world, d(p,y) = .

43

The image, im (p,v,) ,ofthe point p on the subpolygon y; is defined as the closest
point on y, from p. The image may lie on a convex vertex or within an edge of a

subpolygon. The im(p,y,) will have as components the global x and y coordinates,

denoted im(p, ;) = (xim @1 Vim(p, v.))

Proposition 1: For any point p and a subpolygon vy in a world, if y has no vertex
in the interior of the convex hull of T which contains vy, then the image of p on y

is unique.

Proof: Since there are no vertices of y in the interior of the convex hull of T, then
by definition of a convex hull, the vertices of y must lie on the boundary of the
convex hull. Since the convex hull is a convex polygon, then there is only one image

point to 7.

4. Polygonal World

Assume a world W is given which consists of a finite number of polygons and each

polygon is divided into one or more subpolygons. Assume there are » non-overlapping

polygons in the world.

W= {T,..,T},n21 (Eq. 36)
W=, (Eq. 37)
Int (W) = lnt(T) (Eq. 38)

Free(W) = \JFree(T) = RE-w (Eq. 39)

44

Free (W) is called free space of W. oW is defined as the boundary of W. Int(W) is

defined as the interior of W. A rectilinear world is a world in which every polygon

contained in the world is rectilinear.

45

46

VII. GLOBAL MOTION PLANNING / CONVEX
DECOMPOSITION

A. PATH CLASS

A world W = {By, By,....B;}, n>=I, consists of n simple polygons (holes) and
another simple polygon B\, which defines the outmost boundary [KAN95b]. The free space
of W is the inside of By minus the union of the other n polygons’ inside and is denoted by

Free(w). (Although polygons and borders can be non rectilinear in this theory, all examples
given are orthogonal for simplicity.)

A path in W is a continuous function f: [0,1] -> Free(W). The two points f(0) and
f(1) are called its endpoints. If they are distinct, we usually denote f(0) as a start S and f(1)

goal G. We assume that f is rectifiable (its length is finite). Two paths 7 and f with the
same endpoints are said to be homotopic if f can be continuously transformed into s

without moving both endpoints and without running over any polygons. If 5 and 5 are

homotopic, we write f=f . In Figure 25., fi=f, and f3;=f,. The relation = is an

47

equivalence relation and defines equivalence classes of paths that share the same endpoints.

These equivalence classes are called path classes.

Figure 25. Paths

The motion planning problem is a problem of finding the “optimal” motion for a
robot given a world W and a pair of configurations (position and direction). We divide this
problem into two: (i) finding the “optimal” path classes (the global motion planning
problem) and (ii) finding the “optimal” motion in the given optimal path class (local motion
planning problem). This thesis mainly deals with the first problem. It is known that the
number of path classes goes faster than any polynomial function of n, where n is the number

of holes in the world. Therefore, we must find an efficient algorithm for robot motion

planning.

B. DECOMPOSITION

The boundary oW of a world is defined as the union of all polygon boundaries in
W. A border in a world is a straight line segment L, (i) its both endpoints are on the

boundary aw of the world, and (ii) the open segment L is a subset of the free side Free(w)

48

of the world. A finite set D of borders in W is called a decomposition of the world, if D
satisfies the condition that if any two borders share a point, it is one of the endpoints for

each border. Figure 26. shows two ways of decomposing the world shgﬁvn in Figure 25.

D, (Tree Decomposition) D, (Convex Decomposition)

Figure 26. Decompositions

When we say a path f intersects a border L, we also specify the orientation how f

intersects it. By adding an orientation to L, we say f positively-intersects or negatively-
intersects L depending on the direction of f. An oriented border is represented by L * or
L ~. (Although the way an orientation is defined upon a border is arbitrary, we follow this

convention: We give an orientation to each border so that if a path intersects a horizontal

border upward or it intersects a vertical border rightward, we say the path positively-
intersects the border (L ™), otherwise, negatively-intersects (L ~).)
Given a path f in a decomposed world, we define its border sequence A (), as an

ordered list of oriented borders which f intersects. For instance, in Figure 27., the border

sequence of the two paths f1 and f2 are
AA)= (L +Lg+)
A= (Ly+L,+Ls+)

49

In Figure 27., the positive orientation of each border is shown by an arrow. If either

of the endpoints is on a border, this oriented border is also included in its border sequence.
If f does not intersects any borders and if both endpoints of f are not on any border, A (/) is

defined as the empty sequence ¢. If f stays on one border, A (f)= ¢.

Figure 27. Paths in a Decomposed World

The border sequence of a path f in Figure 28. is
A= (L,+L,—L;+Lg+)
This kind of a path can be simplified, because this path is homotopic to the path fi
in Figure 27. Another example of an unreasonable path is one which has infinitely many
intersections with D. Through the following definition and lemma, we can avoid dealing

with these pathological paths. A path f in a decomposed world is said to be regular if it

50

intersects borders for any finite number of times and its border sequence A (f) does not have

any subsequence L * L "orL " L *.

Figure 28. A Path which is not Regular

Lemma 1 For any path f in a decomposed world, there exists a regular path f

such that f=f .

C. HOMOTOPIC DECOMPOSITION AND PATH REGION

Each portion of the free space Free(W) divided by a decomposition D is called a
region. A decomposition D of a world is said to be a homotopic decomposition if all the
polygons in W are connected through the borders in D. All decompositions in Figure 26.,
Figure 27., and Figure 28. are homotopic decompositions.

Lemma 2 Each region in a homotopically decomposed world is contractible (or
does not contain any holes).

The Free(W) may not be divided by a homotopic decomposition D at all. The first

decomposition D, in Figure 26. is such an example. If a homotopic decomposition does not

51

divide the free space into more than one region, this decomposition is called a tree

decomposition.

Proposition 1 A homotopic decomposition of a given world with the minimum
number of borders is a tree decomposition. The number of borders in a tree decomposition
and the number of holes in the world are the same. For an arbitrary world, there exists at

least one tree decomposition.

Virtual
boundary

| Entrance |

z; |

Figure 29. Oriented Region

Suppose z;z, is a subsequence of the border sequence A(f) of a path f, where z;
and z, are oriented borders. Then there is a region R such that f enters into R through the
oriented border z; and exits R through the oriented border z,. We call the borders z; and
z, the entrance and the exit of the region R in relation to the path f. Now we define an

oriented region form the region R by artificially closing all borders belonging to R except
for the entrance and exit. The borders which are artificially closed are called virtual
boundaries of the oriented region. Thus, an oriented region is bounded by (i) entrance, (ii)
exit, (iii) portions of the world boundary, and (iv) virtual boundaries. The union of the parts

(iii) + (iv) is divided into two: the left boundary and right boundary of the oriented region.

5

A left or right boundary of an oriented region may be one point, but cannot be empty
(Figure 29.).

The initial region of a path f is the region where S belongs. If S is on a border, the
initial region is empty. The final region of a path is the region where G belongs. If G is on
a border, the final region is empty. (The left/right boundaries of the first or last regions are
not defined, since they have the exit or the entrance only, not both.)

The path region of a path is the union of the first region, all the oriented regions,
and the last region of the path. The left (right resp.) boundary of a path region is the union
of the left (right resp.) boundaries of all the oriented regions. A path region is also

contractible. The path region of the path f, in Figure 27. in a decomposed world by D, as

shown in Figure 26. becomes the region shown in Figure 30. (If a path region is constructed
on a tree decomposed world, it becomes extremely complex. This is one reason why
convex decompositions are more appropriate in practical work).

A path region is a geometric representation of path classes. Therefore, this concept
of path region is essential in providing the main result which follows. This concept is also
extremely useful in the local motion planning problem, although this thesis does not

address this topic.

Figure 30. Path Region

53

In the following proposition we use the border sequence as a symbolic
representation of path classes.

Proposition 2 (Main Result) Suppose a homotopically decon%éosed world W and
two endpoints in Free(W) are given. For an arbitrary pair of regular paths f and f
connecting these endpoints, f=f ifandonlyif A(HD=A(f).

A sketch of the proof:. (I) Only-if part: Let us consider the path region of f. Since f
and f* are both regular, f is also confined in that path region.

(IL) If part: The border sequence A(f) defines a path region. Since the path region

is contractible with its left / right boundaries, f=yf follows.

D. CONVEX DECOMPOSITION

The connectivity graph method described in the previous Section works for any
homotopic decomposition. However, the use of convex decompositions generally gives
better results, where a decomposition D is said to be a convex decomposition if each region
generated by D is convex. The reasons are (i) convex decompositions makes cost-
evaluation for basic connectivity graph easier, and (ii) convex decompositions makes the

local motion planning task simpler.

Proposition 3 Every convex decomposition is a homotopic decomposition.

54

Proposition 4 A vertical decomposition or horizontal decomposition is a convex

decomposition.

Figure 31. Non-Orthogonal Border

In the world shown in Figure 31., the diagonal border is better than any vertical or
horizontal ones from several aspects. This observation supports the advantage of convex

decompositions over vertical or horizontal decompositions.

55

56

VIII. DIJKSTRA’S ALGORITHM

A. CONNECTIVITY GRAPH OF THE WORLD

The global motion planning problem is the problem of finding the “optimal” path
class to conmect given start and goal configurations [KAN95a]. The homotopic
decomposition method is an extremely useful tool to solve this problem. The connectivity

graph is defined for a homotopically decomposed world.

I
1L13 IL16

lL12 L15

Figure 32. World Decomposition

A node is assigned for each border in the convexly decomposed world. When two

borders, L; and L,, belong to the same region, an edge is created. A cost for this edge is
defined as the energy (or time) for the vehicle to make a motion from L, to L, or from L,
to L. Therefore, these edges are undirected. This cost not only reflect the distance but the

turn needed to make the motion. It may also reflect the safety in the region (i.e. if the region

is narrow, the cost is high). Since the region is convex, any two borders in a region are

57

visible and the cost evaluation is relatively straightforward. This graph is called a basic

connectivity graph.

Figure 33. Basic Connectivity Graph

Given a start and a goal configurations, we add two new nodes, S and G, to the basic
connectivity graph to obtain an augmented connectivity graph. A directed edge from S to
each border in the start region is added to the graph. A cost of the edge is made equal to the
energy needed for a robot to make a motion from the start configuration to the border.
Likewise, a directed edge from each border in the goal region to G is added. A cost of the
edge is made equal to the energy needed for a robot to make a motion from the border to
the goal configuration. Figure 34. shows an augmented connected graph for the convexly

decomposed world in Figure 32.

58

Figure 34. Augmented Connectivity Graph

59

B. ALGORITHM DESCRIPTION

Now, finding the “optimal” path class from S to G in the world shown in Figure 32.
is transformed into the minimum cost path finding problem from S to G in the augmented
connectivity graph shown in Figure 34. The Dijkstra’s algorithm can be perfectly applied
to this global motion planning problem. As a result, a border sequence is obtained. The

computation time is O (N*) using two for loops with the on being nested, where N is the

number of nodes (borders) in the augmented connected graph respectively.

Minimum_Cost_Path_Finding(G, s, g)
begin
for all vertices v do

v .mark:= 0;

V .COSti= oo

s.cost:=0;

VI=S;
repeat

v .mark:= 1;

for all edges (v0,v) € E do
if v0.cost+ c¢(v0,v) < v.costthen
v .cost:= v0.cost+ c(v0,v) ;
v.previ= 00 ;
v0 :=[v such that v .cost is minimum among unmarked v J;

until v0:=g;

Figure 35. Dijkstra’s Algorithm

60

In the Dijkstras’s algorithm G = (V, E) is the augmented connectivity graph with a
node set V and a edge set E. A cost c(u, w) > 0 is given to each edge (u, w). The problem
to be solved is to find the minimum cost path from s to g and the cost itéelf.

For each node u, we use variables u.mark, u.cost, and u.prev ‘in this algorithm.
u.cost is the minimum cost from s to u known so far. u.mark is set to 1 when u.cost is known
to be the minimum cost. u.prev is a pointer to the node which is placed to the previous
position in the shortest path from s to u. When an execution of this program terminates, the
minimum cost is found in g.cost and the shortest path is obtained in a reverse manner

starting from g.prev.

C. DATA STRUCTURE

To completely determine a graph, we need to know the number of nodes in it, and
the neighbors of each node. This observation will lead us to specify the proper data
structure for our implementation of Dijkstra’s algorithm.

The connectivity graph is represented by an array of nodes, GNodes [numOfNodes].
Each node in the graph is a “structure” and has as a member, an array of pointers to node,
adjArray[numOfNodes]. This way we can keep track of the neighbors of each node. The
details of the data structure can be found in Appendix A.

61

Graph

GNodes[0]

adjArgay[n]

CH—™ 5] ee o

GNodes[1] <

adjArgay[n]

GNodes[n-1]

Figure 36. Dijkstra’s Data Structure

D. IMPLEMENTATION

We applied Dijkstra’s algorithm for the augmented connectivity graph in Figure 34.
Figure 37. shows the nodes visited during the search. The minimum cost is found following
the prev. pointers from the Goal node. There is only one path that leads to the Start node.

Every node is visited (see bold circles). Inside each node the u.cost value is shown. Every

62

node has a not NULL previous pointer (u.prev). The nodes and the pointers for the
minimum cost path are highlighted.

q§2‘1-:_Goa1
. Z
— 4 \Lo L3 LI6
e <@
3 3 A 3N\ 1.20
L£ 14 L11(22) 1
L10 X
—— (L1
LE1X 3 L6 D 3 1
L8 3
2
Y O« A24.32
E 2
L1%g > L171])
3
_ 3
L5553 0 8
\ L14
T °
qs"' Start

Figure 37. Dijkstra’s Example Execution

63

64

IX. ALL - PAIRS MINIMUM COST PATHS ALGORITHM

A. CONNECTIVITY GRAPH OF THE WORLD

The problem to be solved is how to find the “optimal” path class? In order to solve
this problem, we need to have a method to evaluate the cost of each path class. A reasonable
approximation method looks translating the polygonal world into a graph [KAN95b].

Given a world W with a homotopic decomposition D, its basic connectivity graph

G=(V, E) is defined as follow: V is a set of nodes or vertices and E a set of edges.

V={L",L |(LeD)y,

namely, we create nodes L* and L~ for each border in the decomposition.

E = {(z;, z,) | there exists an oriented region in D
such that its entrance is z; and its exit is z,}.

These edges are directed. A cost for this edge is computed, for instance, as the
energy (or time) needed to move the vehicle from the center of the entrance border to the
center of exit border with appropriate vehicle directions. In this cost evaluation, the cost for
both translational and rotational motions should be included. The basic connectivity graph
of a decomposition shown in the upper half of Figure 38., is translated into the basic
connectivity graph shown in the lower half of the same Figure (a cost for each edge is not

specifically shown).

65

10

Figure 38. A Decomposition and Its Basic Connectivity Graph

66

It is straightforward to compute “all-pair minimum cost paths” on this graph G. By

this method we preprocess the minimum cost from any oriented border to any other

oriented border in O(N3) , where N is the number of borders in D. After this

preprocessing, for any oriented border pair (z,z’), the cost c¢(z,z’) is obtained in a

constant time. In general, c(z,7") #¢(z,2) .

So far this preprocessing is done independent of a situation with a given start-goal

configuration (position and direction) pair. Given two end-configurations, q and qg, We

create an augmented connectivity graph based on the basic connectivity graph by the
following procedure:

1. Add nodes g and g, to V. An orientation + or - is not needed.

2. Let Rs be the region where gs belongs to. Let zy, g, ... be the possible exit
borders belonging to Rg. Add an edge (g, z;) to the edge set E for each i. Evaluate the cost
c(qs, Z;) using some simulation technique and define it as the edge cost. This task is called

initial portion motion planning.

3. Let Rg be the region where qg belongs to. Let Zg1, Zg),-.- be possible entrance
borders belonging to R,. Add an edge (z;, qg) to the edge set E for each i. Evaluate the cost
¢(2g;, 9g) using some simulation technique and define it as the edge cost. This task is called

final portion motion planning.

67

Figure 39. Addition for Augmented Connectivity Graph

If the start and goal configurations are specified as shown in Figure 39., we will add

two nodes, g, and gy, and five edges - as shown also in the right half of the same Figure -

to the basic connectivity graph. The result is an augmented connectivity graph.
Then the original global motion planning algorithm is transformed into a minimum

cost path finding problem from ¢ to g, in the augmented graph. If the numbers of edges

added in Steps 2 and 3 are M and K respectively, we need to compare MK distinct costs.
In a given world, the maximum values of M and K are limited. Therefore the cost for the
graph search portion is constant. The most time consuming task is the initial/final motion
planning described in Steps 2 and 3. This is a good result when we recollect the fact that
the number of distinct path classes is beyond any polynomial function of the number of
obstaclesn.

As a review, first we divide the free space of the world into regions using borders.
A connectivity graph is next defined to represent the geometrical relation of the world and

to represent distinct path classes symbolically. In this graph, the borders are nodes as

68

opposed the previous method, in which regions are used as nodes. A pair of borders
(nodes), which belong to the same region, is connected by an edge in the connectivity
graph. A cost of the motion between the two borders is evaluated by s;fnulation and given
to the cc;rresponding edge. We use the notion of oriented borders fof more descriptive
representation of path classes in the connectivity graph. In order to find the optimal path

class the All-Pairs Minimum Cost Paths algorithm is applied.

B. ALGORITHM DESCRIPTION

The problem: Given a directed weighted graph G=(V, E) with nonnegative costs,
find the minimum-cost paths between all pairs of vertices.

The solution: There is an induction method useful to solve the problem. We leave
the number of vertices fixed, and we put restrictions on the type of paths allowed. The
inductions addresses the removals of these restrictions on the paths until, at the end, all
possible paths are considered. We label the vertices from 1 to IVI. A path from u to w is
called a k-path if, except for u and w, the highest-label vertex on the path is labeled k. In
particular, a O-path is an edge (since no other vertices can appear on the path).

Induction hypothesis: We know the lengths of the minimum cost paths between all
pairs of vertices such that only k-paths, for some k < m, are considered.

The base of the induction is m=1, in which case only direct edges can be considered
and the solution is obvious. We assume the induction hypothesis for m, and we try to extend

it to m+1.

69

AlgorithmAll-Pair Minimum Cost Paths

Input:

Cost (an n * n adjacency matrix representing a weighted graph.).‘

{NCost [x, y]is the cost of the edge (x, y) if it exists, and Infinity 6therwise;
Cost [x, x] is O, for all x}

Previous (an n * n adjacency matrix containing vertices).
Initial state for Previous:
{Previous [x, y] is the id of vertix (y), if Cost[x,y]!= Infinity.

Previous [x, y] is Undefined otherwise, and Infinity is assigned to that entry. }

Output:
At the end matrix Cost contains the lengths of the shortest paths and
matrix Previous contains the neighbor to (x) vertix, to be tracked in the route for

the shortest paths, for each entry [x, y].

begin
form:=1tondo
forx:=1tondo
fory:=1tondo
if Cost[x, m] + Cost[m,y] < Cost[x, y] then

Cost[x, y] := Cost[x, m] + Cost[m,y]

Previous[x, y] := Previous[x, m]

end
Figure 40. All-Pairs Minimum Cost Paths algorithm

70

C. DATA STRUCTURE

To completely determine the graph, we need to define the nodes of it and the
neighbors of each node. We are using a two-dimensional array, named
Cost[numOfNodes][numOfNodes]. This array provides the information on the number of
nodes, and the connectivity between them.

Let x, y nodes in the connectivity graph. Cost is O for an entry (x, y) of the Cost

matrix, if x =y . Costis « for an entry (X, y), if xzy and the two nodes are not
connected. For all other cases we assign a value representing the energy or time a robot
needs to get from node x to node y of the graph. |

Then we are using a two-dimensional array, named
Previous[numOfNodes][numOfNodes]. This array provides the information on which is
the actual neighbor of each node (by node-id), and will keep the information in the search
for the minimum cost path between every single pair of nodes.

For an entry (x, y) of the Cost matrix, Previous node is assigned the y-node’s id, if

x#y and the two nodes are connected. Previous is assigned ¢ in all other cases.

The details of the data structure can be found in Appendix A.

D. IMPLEMENTATION

We applied All-Pairs Minimum Cost Paths algorithm for the connectivity graph in
Figure 38. The input file contains the edge cost values for the nodes. When two nodes are
not connected the value of 99 is used for o .

The initial settings for the Cost and Previous arrays are shown in Figure 41. and
Figure 42. respectively. (D'” and I” matrices).

The result Cost and Previous arrays are shown in Figure 43. and Figure 44.

respectively. (D and 11® matrices). The details of the implementation program can be

found in Appendix A.

*** 1 2 3 4 5

*
1
2
3
4
5
6
7
8

9 *
10*
11>
12+
13+
14~*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*

0

99
0
99

99

2

99

99

6

7

8

99
99
99
929
99
99
99

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23.24 25 26 27 28

99

99
99
99

99
99
1

99
99
1

99
99
99
99

99

99

99

99

99

99

99

99

99

99

99

Figure 41. Cost Array - Initial Matrix D(o’

99

99

99

99

99

P R R R R s e e e R e s S s eS SR sd szl s

99

**x 1 2 3 4

*

*
*
*
*
*
*
*
*
w*

WOOoJaUs W

o

CO0O0O0O0O0CO0CO0OO0OO0OO0O0O0DO0OO0OO0OOHOOOQOOO0OO0
[eJoNoNolaolaRolofoRo oo oloololofolofolole ool Yoo o]

[eJoRoNoRoReNoloNoofojlofojojojofoRoolojooloNoeNoRa) o

0

CO000O0O0O0OO0COCOO0OO0OOOHOOODOOMNODOOO

5 6 7

CO0O00O0O0OOODODOO C)c)<3t3<><2 coooOoOOWOoOO
OO0 O0O0O0CO0O0O0O0OO0OO0O0OOO0OO0OO0OODO0OO0ONOOOOOOO

COO0O0O0O000O00O0O00CO0OO0O0O0O00O0O0OOONOOOO

8

0

OOOOOOOOOOOOOOZOOOOOOOOOOOO
OCO0OO0O0O0CO0O00O0OO0O0O00O0COO0O0DO0OO0OO0OO0OO0OOONO

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

CO0O000CO0O00C0000OrOOOQOCOOO0O0OO0O0OOOOO0O0

OO0 O00O0VOOO0C0OOOTOOOOOAAOOWOO

(=]
O0000O0CO0O0O0OCOOOO0O0OCOO0OO0ONIOODOOO0O

CO0O0O0O0OO0OOHOOOODOOOOODOOOOOOOO

CO0OO0O0OO0OO0OO0OONOCOO0O0OO0O0OOCOO0DOO0OO0OO00OOOCO

CO00O0OCOODOOOVOOOLOOOOVWOOOVDOOOO

N
[elejoRolofolelolo ollojoRoloRofole} Julojelelolofojo}ola]

CO0OO0OCONOOODODOOOO0O0OO0O0O0OOOO0OOOOO0O

CONOONODODODOOOCO0OO0OO0DOODODODOODOOOO

w

N
OCOCO0OO0O0O00O000DOO0OOOOHOOOO0OODOO0ODOO0O0O

w
(=R ¥eNoloNeoRoRofaloYoRoReloRalofalaRoloNoaoloRoleRoRal

0

OOOOOOOOOOOOOEOOOOOOOOOOOOO

OO0 OMNOOOODO0O0OO0CQOCODOO0O0OOO0OC

e
CONODOOOQCOOOHOOOOOOOCOCOOOOOOOO

OCO0OO0O0OO0O0OONODOOCO0O0OO0OO0OO0O0OO0OO0O0OO0O0DOOOC

Figure 42. Previous Array - Initial Matrix 11¢”

72

~
[ejejolojaefolololoRo o) Jojofolelolelofolelolo oo oo e

0

NOOOOOO0OO0O0O0OO0O0OO0O0OO0OO0O00DO0OO0O0O0O0OOO0O

00

0

wn
CCOVOO0OCOOHOOOOODOOODOOOOO0OOOOOO

COONODOO0OO0OO0O0O0OO0O0ODOOODO0OOOOOOO0OO00O0O0

R Rl R e e s e R e s e e R R S R R R 2L Ll s

w

¥**1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27 28
i*t*******'k-k****ﬁ***i*i*it****************i**i******'k*t***i***i**************i*********

*0 342 324 306 2835273 317 274517 13 21 17 17 46 16 48 14 14 20 16 18
* 58 0 60 26 26 88 28 86 1 57 61 25 29 85 11 47 71 15 39 75 12 46 14 44 72 42 74 40
*26 320 302 284 2633251 295 2543 15 11 19 15 15 44 14 46 12 12 18 14 16
* 602 620 28903088 3 59 63 27 31 87 13 49 73 17 41 77 14 48 16 46 74 44 76 42
* 32 30 34280 622 60 31 3135273 59 41 21 45 17 13 49 42 20 44 18 46 16 48 14
*264 282 300 32265 251 29 33 2515 15 11 19 43 15 16 14 18 12 12 46 14 44
* 30 28 32 26 26 60 0 58 29 29 33 25 1 57 39 19 43 15 11 47 40 18 42 16 44 14 46 12
*286 304 322 340 7 273 31352717 17 13 21 45 17 18 16 20 14 14 48 16 46
* 57 27 59 25 25 87 27 85 0 56 60 24 28 84 10 46 70 14 38 74 11 45 13 43 71 41 73 39
101 353 335 317 29360 4 328 28 46 18 14 22 18 18 47 17 49 15 15 21 17 19
11* 25 31 27 29 29 27 31 25 32 24 0 56 32 24 42 14 10 46 42 14 43 13 45 11 11 45 13 43
12* 333 351 1 633 614 32360 4 60 14 22 46 18 14 50 15 21 17 19 47 17 49 15
13* 29 27 31 25 25 59 27 57 28 28 32 24 0 56 38 18 42 14 10 46 39 17 41 15 43 13 45 11

1
2
3
4
5
[
7
8
9

15* 47 17 49 15 15 77 17 75 18 46 50 14 18 74 0 36 60 4 28 64 1 35 3 33 61 31 63 29

Figure 43. Cost Array - Result Matrix D@

***1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

i****i***i*******i************t**'ki****i***it****ﬁ****i******l************!***1********
1*0 4 1 6 3 8 5 142 163 187 209 22 11 26 13 27 15 24 21 17 17 28 25 19
2*100 1 12128 5 142 163 18 7 20 9 22 11 23 13 27 15 24 21 26 17 28 25 19
3*104 0 6 3 8 5 142 163 187 209 22 11 26 13 27 15 24 21 17 17 28 25 19
4*104 1 0 128 5 142 163 18 7 209 22 11 23 13 27 15 24 21 26 17 28 25 19
S*104 1 120 8 5 142 163 18 7 20 9 22 11 26 13 27 15 24 21 26 17 28 25 19
6*104 1 6 120 5 142 16 6 18 7 20 9 22 11 23 13 27 15 24 21 17 17 28 25 19
7*%*104 1 12128 0 142 163 187 209 22 11 26 13 27 15 24 21 26 17 28 25 19
8*104 1 6 128 5 0 2 16 6 18 7 209 22 11 23 13 27 15 24 21 17 17 28 25 18
9*%104 1 12128 5 140 163 187 209 22 11 23 13 27 15 24 21 26 17 28 25 19
10104 1 6 3 8 5 142 0 3 187 209 22 11 26 13 27 15 24 21 17 17 28 25 19
11*104 1 6 3 8 5 142 16 0 18 7 20 9 22 11 23 13 27 15 24 21 17 17 28 25 19
12104 1 12128 5 142 163 0 7 209 22 11 23 13 27 15 24 21 26 17 28 25 19
13* 104 1 12128 5 142 163 18 0 20 9 22 11 26 13 27 15 24 21 26 17 28 25 19
14* 104 1 6 128 5 142 166 187 0 9 22 11 23 13 27 15 24 21 17 17 28 25 19
15104 112128 5 142 16 3 18 7 20 0 22 11 23 13 27 15 24 21 26 17 28 25 19
16* 104 1 6 3 8 5 142 163 187 209 0 11 26 13 27 15 24 21 17 17 28 25 19
17104 1 6 3 8 5 142 163 187 209 22 0 23 13 27 15 24 21 17 17 28 25 19
18* 104 1 12128 5 142 163 18 7 209 22 11 0 13 27 15 24 21 26 17 28 25 19
19* 10 4 1 12128 5 142 163 187 209 22 11 26 0 27 15 24 21 26 17 28 25 19
20104 1 6 128 5 142 16 6 18 7 209 22 11 23 13 0 15 24 21 17 17 28 25 19
21* 104 1 12128 5 142 16 3 187 209 22 11 23 13 27 0 24 21 26 17 28 25 19
22104 1 6 3 8 5 142 163 18 7 209 22 11 26 13 27 15 0 21 17 17 28 25 19
23* 104 1 12128 5 142 163 18 7 209 22 11 23 13 27 15 24 0 26 17 28 25 19
24* 104 1 6 3 8 5 142 163 18 7 209 22 11 26 13 27 15 24 21 0 17 28 25 19
25*104 1 6 128 5 142 16 6 18 7 209 22 11 23 13 27 15 24 21 17 0 28 25 19
26* 10 4 1 12 128 5 142 163 18 7 209 22 11 26 13 27 15 24 21 26 17 0 25 19
27104 1 6 128 5 142 16 6 187 209 22 11 23 13 27 15 24 21 17 17 28 0 19
28* 104 1 12128 5 142 163 18 7 209 22 11 26 13 27 15 24 21 26 17 28 25 0

Figure 44. Previous Array - Result Matrix

73

74

X. CONCLUSION

A. RESULTS

1. Sonar Characteristics Measurement

Yamabico’s basic sonar characteristics, taken by translational scanning, showed
reasonable results for the sonars. The experiments taken by applying the left and right
sonars. The results indicate the sonars have a high degree of accuracy while the robot is
moving. Sonar data had a precision of 1 to 2.5 cm during the testing, in robot’s distances
from the object 100 cm to 150 cm. This is the difference between some dimension of an
object in the real world and its image in the robot’s understanding of this world.

The coordination is successful between the sonar and motion systems. Specifically,
the linear fitting algorithm accurately applies sonar data to build line segments that
represent the wall.

2. Global Motion Planning

The connectivity graph representing a model world was given as input to two
existing algorithms; Dijkstra’s and All-Pairs Minimum Cost Paths. For the physical
environment used in Yamabico robot motion experiments, this connectivity graph is
typically a sparse one.

To find a minimum cost path from a start to a goal configuration, Dijkstra’s

algorithm applied in this environment. Many unnecessary comparisons between each

node’s non-neighbor nodes were avoided. This algorithm has a time complexity of 0 (n%)

and is to be used when the world is dynamic and n is very large; otherwise the All-Pairs

Minimum Cost Paths algorithm with time complexity 0 (x’), is far better because

preprocessing makes the path class finding time to 0 (1) .
A known static world favors the use of pre-calculated minimum cost paths between
all pairs of nodes in the respective basic connectivity graph. Thus, the All-Pairs Minimum

Cost algorithm is ideally suited for the Yamabico operating environment. For this

environment, the time complexity O (n’) using the All-Pairs Minimum Cost algorithm is

better to that applying the Dijkstra’s algorithm.

The latter still has a chance when the graph is dense. We will prefer to use it, to
avoid memory space problems that are likely to occur in the first algorithm’s
implementation. Thus, All-Pairs Minimum Cost algorithm is the optimal method for global

motion planning.

76

APPENDIX A. USER PROGRAMMS

This appendix contains the program files which describe the algorithms
implemeilted by this work. Inputs and outputs are described accordingly. The heading of

each file explains the details.

77

/***
E3

* FILE : dijkstra.C

* AUTHOR : Athanassios Papadatos

*DATE : 31 October 1995

* DESCRIPTION : Minimum Cost Path Finding. Applies to Robot
* Global Motion Planning.

***/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>

#define INFINITY 99
#define numOfNodes 22 //HERE # OF NODES
#define out_file “dijkstra.dat”

ofstream kds;

//adjArray is an array of pointers to nodes.
//Each pointer (adjArray[i]) points to the address
//of node GNodes([i], to be initialized when

//build the Graph.
struct Node {
int id;
int cost;
int mark; // its value is “0” or “1”
Node * prev; // a pointer to previous node

Node * adjArray[numOfNodes];

b

//a Graph is an array of nodes & an array of edges represented by their cost.
//Start - Goal node are included in CGraph.
//an Edge is represented by [i][j] the GNodes, and by its cost.

struct Graph {
Node GNodes[numOfNodes];
int ECost[numOfNodes][numOfNodes];

};

78

/**

* FUNCTION: extractMin(Graph G)
* DESCRIPTION: Searches for the node i in GNodes[] with min cost

* an Returns its index.
**#/

int
extractMin(Graph G)
{
Node tmp;
tmp = G.GNodes[numOfNodes-1]; //if nothing the last one is the min!!!!

int min= numOfNodes-1; //at begmlng last element is min OR...
for (int j=0; J<num0fNodes J++){

if (G.GNodes[j].mark == 0) {

if (G.GNodes[j].cost < tmp.cost) {
tmp = G.GNodes[j];
min=j;

}
/

return (min);

/**
*

* FUNCTION :Dijkstra()
* DESCRIPTION : Applies the main Dijkstra’s algorithm
%

***f/

void
Dijkstra()
{

Graph G;
ifstream in_file(“graph22.dat”, ios::in);

79

if (lin_file) {

cerr << “File could not be opened” << endl;

exit(1);)
/.

/***

* COMMENTS: In this part for each node record we initialize all its fields.
* that is: cost, mark, *prev.
**/

/nitialize all nodes.
for (int n=0; n<numOfNodes; n++) {

G.GNodes[n].id =n; //if the first node then cost is 0

G.GNodes[n].cost = INFINITY; //n ? INFINITY : 0;
G.GNodes[n].mark = 0;

G.GNodes([n].prev = 0;
/
kds<<endl;

/**
* COMMENTS : In this part of the code we initialize Edge Costs.

* It initializes a 2-diamensional array to G.ECost[i][j]= cost

*

thus for the edge comprised by the ith-jth Nodes we’ll have its cost.
**ﬁ/

//When looking for O’s neighbors it has one if there is edge 01.
//When looking for 1’s neighbors it has one if there is edge 10.

for (int i=0; i<numOfNodes; i++)X
for (int j=0; j<numOfNodes; j++) {
int cost;

in_file >> cost;
G.ECost[i][j]= cost;

80

/***

*COMMENTS : We Initialize ADJ. ARRAYS
%

Per each node, one array of pointers to its neighbors
.*********/

Jor (int b=0; b<numOfNodes; b++) {
int w=0;
Jor (int c=0; c<numOfNodes; c++) {
if (G.ECost[b][c] != INFINITY) {

G.GNodes[b].adjArray[w] = & G.GNodes[c IR

W+,

Jor (int d=w+1; d<numOfNodes; d++) {
G.GNodes[b].adjArray[d] = NULL;

//Here I assume I've already build the Graph with Start node = #0
//and goal = #(numOfNodes-1)

//All the nodes have cost= 9.

// mark, *prev, adjArrays initialized by run time when

// I'll define the edges.

//Let’s begin the DIJKSTRA.

//this is the start node
G.GNodes[0].cost=0;

int s=0;
//find neighbors
do{

kds << “\n Min costnode : “<< s <<“ MARKIT!!”< <endl;
MS << € LI LI L L L FLIL A L ”<<endl;

G.GNodes[s].mark= 1;

/lpick its adjArray of neighbors and for each neighbor...

int j=0;
while (G.GNodes(s].adjArray[j]) { /I reduce the time

int ind;
ind = (*G.GNodes[s].adjArray[j]).id; //the id of neighbor
int edgeCost = G.ECost[s][ind];

kds <<‘“\n”<< s << “‘sneighbor is: “<< ind <<endl;
kds << < <endl;

if (G.GNodes[s].cost + edgeCost < (*G.GNodes[s].adjArray[j]).cost) {
(*G.GNodes[s].adjArray[j]).cost = G.GNodes[s].cost + edgeCost;
(*G.GNodes[s].adjArray[j]).prev= &G.GNodes[s];

kds << “ Dijkstra’s step DONE...” <<endl;
kds << ind <<“‘s cost = “ <<G.GNodes[ind].cost<<endl;
kds << ind <<“‘s prev ----> “ << (*G.GNodes[ind].prev).id
<<endl;

else {
kds << “ Dijkstra’s step DONE...” <<endl;
kds << ind << “ has a smaller cost already!!! “ <<endl;
J++;

} /ffinish with this “s” node’s neighbors
kds <<endl<<endl;

//Pick Minimum Cost Node
s = extractMin(G); //new neighbor

) while (G.GNodes[s].id != numOfNodes-1); //GOAL NODE IS numOfNodes-1

/funtill goal is reached ASSUME GOAL
//is the last node G.GNodes[numOfNodes-1].id

G.GNodes[numOfNodes-1].mark= 1; //MARK GOAL node

kds << “\n\i Min cost node is GOAL. Path determined!!!” <<endl;
kds << < <endl;

kds << “\nCost of Shortest Path =" << G.GNodes[numOfNodes-1].cost <<endl;

82

kds << ‘“\n\n Shortest Path is: “;

Node * tmp; .
tmp = & G.GNodes[numOfNodes-1]; //Initialy, tmp points to the GOAL node

kds << (*tmp).id;

while ((*tmp).prev!=0) {
kds << ---> “;

kds << (¥(*tmp).prev).id;

tmp = (*tmp).prev;

kds <<endl <<endl;

} //END Dijkstra(G)

sk sk ok skeoke sk ok sk sk skt sk ek sk ok sk s ok sk ok sk s ok ok sk sk sk sk sk sk st sk ok sk ke sk sk ok ok s sk ok ok
*

* Function: main()
*Description: Makes the necessary calls for Dijkstra’s algorithm
*

fo execute.
**f/

int

main()

kds.open(out_file);
Dijkstra();
kds.close();

return(0);

83

/***
*

*FILE . ap.C
* AUTHOR : Athanassios Papadatos
* DATE : 1Dec. 1995

* DESCRIPTION : All-Pairs Minimum Cost Paths Algorithm
* : Applies to Robot Global

Motion Planning.
*

st sk ok ok ok ok e ok sk sk ok sk e sk sk sk sk sk st sk ok sk sk stk sk sk e skoskeok sk sk sk sk e sk sk sk sk sk ko skokskeskok deskoksk ok ke sk skokok ok /

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>

#define INFINITY 99
#define numOfNodes 28 //HERE # OF NODES
#define out_file “ap.dat”

ofstream kds;

struct Node {
intid;

},.

//a Graph is an array of nodes & an array of edges
//represented by their cost.

//Start - Goal node are included in CGraph.

struct Graph {

Node Nodes[numOfNodes];

int Cost[numOfNodes][numOfNodes];

//an Edge is represented by [i][j] the GNodes,
//and by its cost.
int Previous[numOfNodes J[numOfNodes];

5

/Input x, y = 1..numOfNodes
void

traceSPath(Graph G, int x, int y)
{

84

kds<< ‘“\i\n\n Shortest Path “<<y<<“<--"<<x<<“:"<<endl;
kds<<*“ "< <endl;
kds<<y;

x=x-1;
y=y-1;
¥(xl=y){
while (1) {
int tmp;

//Previous returns node.id=1,..,n.
tmp=G.Previous[x][y];

kds << “<--"<<tmp;
y=(tmp-1);

if(x==y)
break;

void
allPairs()

Graph G;
ifstream in_file(“graph28.dat”, ios::in);
if (fin_file) {

cerr << “File could not be opened” << endl;
exit(1);

/**'*****/
/4 INITIALIZE NODES
for (int n=0; n<numOfNodes; n++) {

G.Nodes[n].id =n+1;

85

/***/

/ INITIALIZE Cost/ Previous ARRAYS.

for (int i=0; i<numOfNodes; i++) {
for (int j=0; j<numOfNodes; j++) {

int weight;
in_file >> weight;

G.Cost[i][j]= weight;

if ((weight == INFINITY) Il (i==j)){

G.Previous[i][j] = 0;
//The above 0 stands for NIL predecessor.
/

else

G.Previous[i][j] = G.Nodes[i].id;
/

kds< < “*** “<<setiosflags(ios::left)<<setw(3)<< “1”<<setw(3)<<“2”

<<setw(3)<<“37<<setw(3)<< “4”<<setw(3)<<“5"<<setw(3)<< “6” <<setw(3)<<
“77<<setw(3)<< “8” << setw(3)<< “9”<<setw(3)<< “10” <<setw(3)<< “1]1 "< <setw
(3)<<“12”<<setw(3)<< “13”<<setw(3)<< “14” <<setw(3)<<“15"<<setw(3)<<“]
6!)

<<setw(3)<<“17”<<setw(3)<<“18”<<setw(3)<< “19” <<setw(3)<< “20” <<setw(3
)<< “2] " <<setw(3)<< “22 "< <setw(3)<< “23” < <setw(3)<< “247 <<setw(3)<< “25”
<<setw(3)<<“267<<setw(3)<< “27"<<setw(3)<< “28”<<endl;

kds<< €6 s s sk s ok sk sk sk 3k sk sk sk sk sk sk sk sk sk sk sk 3k sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok 3k ok sk ok sk sk ok ok sk sk ok ok sk sk sk sk sk sk sk sk skkesk sk ok
************************”;
for (int a=0; a<numOfNodes; a++){
kds<<endl;
kds<<setiosflags(ios::left)<<setw(2)<<a+1<<“* %
for (int y=0; y<numOfNodes; y++){
kds<<setiosflags(ios::left)<<setw(3)<<G.Cost[a][y];

86

kds<<endl<<endl;

kds< < “*** “<<setiosflags(ios::left)<<setw(3)<< “1 "< <setw(3)<<“2”
8

<<setw(3)<< “37<<setw(3)<<“4”<<setw(3)<< “5”<<setw(3)<< “6 "< <setw(3)< <
“77<<setw(3)<<“8"<<setw(3)<<“9”<<setw(3)<< “107” <<setw(3)<< “11”<<setw
(3)<<“I2”<<setw(3)<<“13"<<setw(3)<< “14” <<setw(3)<< “15” < <setw(3)<< “]
6}’

<<setw(3)<<“17”<<setw(3)<< “18”<<setw(3)<< “19”<<setw(3)<<“20” < <setw(3
)<<“217<<setw(3)<< “227 < <setw(3)<< “237 << setw(3)<<“24 " < <setw(3)<< “25”
<<setw(3)<<“26”<<setw(3)<< “27"<<setw(3)<< “28” < <endl;

kdb<<“**#****************
************************”;

for (int c=0; c<numOfNodes; c++){
kds<<endl;
kds<<setiosflags(ios::left)<<setw(2)<<c+I1<<“* “;
for (int d=0; d<numOfNodes; d++){
kds<<setiosflags(ios: :left)<<setw(3)<<G.Previous[c][d];

/

kds<<endl<<endl;
/**f/

//Change Costs - lengths of shortest paths - and
// Previous

for (int m=0; m<numOfNodes; m++) {
for (int x=0; x<numOfNodes; x++) {
for (int y=0; y<numOfNodes; y++) {

if (G.Cost[x][m] + G.Cost[m][y] < G.Cost[x][y]) {
if (G.Cost[x][m]!=INFINITY && G.Cost[m][y]!=INFINITY) {

G.Cost[x][y] = G.Cost[x][m] + G.Cost[m][y];

G.Previous[x][y] = G.Previous[m][y];
}

else {

87

G.Cost[x][y] = G.Cost[x][y];
G.Previous[x][y] = G.Previous[x][y];

}

kds< <endl<<endl<<endl<<endl;

kds<< “*** “<<setiosflags(ios::left)<<setw(3)<<“1” < <setw(3)<< “2”

<<setw(3)<< “3"<<setw(3)<< “4"<<setw(3)<< “5S 7 <<setw(3)<< “6 "< <setw(3)<<
“77<<setw(3)<<“8" << setw(3)<<“9"<<setw(3)<< “107 <<setw(3)< < “ 11" <<setw
(3)<<“127<<setw(3)<< “13”<<setw(3)<< “14”<<setw(3)<< “15" < <setw(3)<< “]
6’)

<<setw(3)<<“17”<<setw(3)<<“18"<<setw(3)<< “19” <<setw(3)<< “20” <<setw(3
)<< “2] "< <setw(3)<<“227<<setw(3)<< “23 7 <<setw(3)<< “24" < <setw(3)<< “25”
<<setw(3)<<“26” <<setw(3)<<“27 "< <setw(3)<< “28”<<endl;

kds< < “Fxkskkok dokokkokkokok ok ok skokskok sk ko sok ook okt sk fskok sk ks koo ok ks kool ok ok sk okok ok
skt ook Rk ook ook

for (int a=0; a<numOfNodes; a++){
kds<<endl;
kds<<setiosflags(ios::left)< <setw(2)<<a+1<<“* “;
for (int y=0; y<numOfNodes; y++){
kds<<setiosflags(ios::left)<<setw(3)<<G.Cost[a][y];

kds<<endl<<endl;

kds< < “*** “<<setiosflags(ios::left)<<setw(3)<<“1”<<setw(3)<< “2”
8

<<setw(3)<< “37<<setw(3)<< “4”<<setw(3)<<“S7<<setw(3)<< “67 < <setw(3)<<

88

“77<<setw(3)<<“8”<<setw(3)<< “9"<<setw(3)<< “10” <<setw(3)<< “11 < <setw
(3)<<“127<<setw(3)<<“13”<<setw(3)<< “14” <<setw(3)<< “15" < <setw(3)<< “I
6”

<<setw(3)<<“17”<<setw(3)<<“18”<<setw(3)<< “19” <<setw(3)<<“20 < <setw(3
)<< 217<<setw(3)<< “227<<setw(3)<< “23” <<setw(3)<<“24"< <setw(3)<<“25”
<<setw(3)<<“26”<<setw(3)<< “27”<<setw(3)<< “28” <<endl;

Fecls < < ok srskakskok sk sk skokskeok ook st e stk ok skl s o ok o ok ok ok sk ok sk sk o e ke st s ok sk o sk ok ok o o ok ok ok ok ek sk ok ok oK ok
skt kR

for (int c=0; c<numOfNodes; c++){
kds<<endl;
kds<<setiosflags(ios::left)<<setw(2)<<c+]<< “* “;
for (int d=0; d<numOfNodes; d++){ .
kds<<setiosflags(ios::left)< <setw(3)<<G.Previous[c][d];

traceSPath(G, 1, 7);

traceSPath(G, 1, 11);
traceSPath(G, 1, 10);
traceSPath(G, 1, 27);

kds<<endl<<endl;

/R stk ok steske ok skeoke ke sk sk ke s sk sk ok sk sk sk sk sk sk sk sk ks sk s sk sk skeske skeoke sl sk skeske sk skske sk stk sk ok

*FUNCTION :main()
* DESCRIPTION : Makes the call to function allPairs()
* and arranges to open and close the

* appropriate files.
**f/

int
main()

kds.open(out_file);

allPairs();
kds.close();

return(0);

89

Y

90

APPENDIX B. PROGRAMMS’ RESULTS

This appendix contains the output data files resulting from the implementation of

algorithrfls described in Appendix A. The heading of each file explains the details.

/***;#**************
-

*FILE . dijkstra.dat

* AUTHOR : Athanassios Papadatos

* DATE : 31 October 1995

* DESCRIPTION : Contains the results of the search for the minimum cost

* path for the graph in Chapter 8.

***/

Min cost node : 0, MARK IT!!

0’s neighbor is: 5
Dijkstra’s step DONE...
5’scost=5

5’s prev ---->0

0’s neighbor is: 14
Dijkstra’s step DONE...
14’s cost=8

14’s prev ---->0

Min cost node : 5, MARK IT!!

5’s neighbor is: 0

Dijkstra’s step DONE...
0 has a smaller cost already!!!

5’s neighbor is: 1

Dijkstra’s step DONE...
I’'scost=8
I’s prev ---->5

5’s neighbor is: 14

Dijkstra’s step DONE...
14 has a smaller cost already!!!

Min cost node : 1, MARK IT!!

92

I’s neighbor is: 2

Dijkstra’s step DONE...
2’scost= 10
2’s prev ----> 1

1’s neighbor is: 5

Dijkstra’s step DONE...
5 has a smaller cost already!!!

Min cost node : 14, MARK IT!!

14’s neighbor is: 0

Dijkstra’s step DONE...
0 has a smaller cost already!!!

14’s neighbor is: 5

Dijkstra’s step DONE...
5 has a smaller cost already!!!

14’s neighbor is: 17

Dijkstra’s step DONE...
17’s cost =11
17’s prev ----> 14

Min cost node : 2, MARK IT!!

2’s neighbor is: 1
Dijkstra’s step DONE...
1 has a smaller cost already!!!

2’s neighbor is: 3
Dijkstra’s step DONE...
3’scost=12

3’s prev -—-->2

2’s neighbor is: 6
Dijkstra’s step DONE...
6’s cost=13

6’s prev ---->2

Min cost node : 17, MARK IT!!

17’s neighbor is: 14

Dijkstra’s step DONE...
14 has a smaller cost already!!!

17’s neighbor is: 18

Dijkstra’s step DONE...
18’s cost =13
18’s prev ----> 17

Min cost node : 3, MARK IT!!

3’s neighbor is: 2

Dijkstra’s step DONE...
2 has a smaller cost already!!!

3’s neighbor is: 4

Dijkstra’s step DONE...
4’s cost=14
4’s prev ---->3

3’s neighbor is: 6

Dijkstra’s step DONE...
6 has a smaller cost already!!!

Min cost node : 6, MARK IT!!

6’s neighbor is: 2

Dijkstra’s step DONE...
2 has a smaller cost already!!!

6’s neighbor is: 3

Dijkstra’s step DONE...
3 has a smaller cost already!!!

6’s neighbor is: 8

Dijkstra’s step DONE...
8's cost=17
8’s prev -—--> 6

Min cost node : 18, MARK IT!!

18’s neighbor is: 15

Dijkstra’s step DONE...
15’s cost = 16
15’s prev ----> 18

94

18’s neighbor is: 17

Dijkstra’s step DONE...
17 has a smaller cost already!!!

18’s neighbor is: 19

Dijkstra’s step DONE...
19’s cost = 15
19’s prev ----> 18

Min cost node : 4, MARK IT!!

4’s neighbor is: 3

Dijkstra’s step DONE...
3 has a smaller cost already!!!

4’s neighbor is: 7
Dijkstra’s step DONE...
7’s cost= 17

7’s prev ----> 4

Min cost node : 19, MARK IT!!

19’s neighbor is: 15

Dijkstra’s step DONE...
15 has a smaller cost already!!!

19’s neighbor is: 18

Dijkstra’s step DONE...
18 has a smaller cost already!!!

19’s neighbor is: 20
Dijkstra’s step DONE...
20’s cost =17

20’s prev ----> 19

Min cost node : 15, MARK IT!!

15°s neighbor is: 12

Dijkstra’s step DONE...
12’s cost =20
12’s prev ----> 15

15’s neighbor is: 18

95

Dijkstra’s step DONE...
18 has a smaller cost already!!!

15’s neighbor is: 19

Dijkstra’s step DONE...
19 has a smaller cost already!!!

Min cost node : 7, MARK IT!!

7’s neighbor is: 4
Dijkstra’s step DONE...
4 has a smaller cost already!!!

7’s neighbor is: 9
Dijkstra’s step DONE...
9’s cost = 21

9’s prev -—->7

7’s neighbor is: 21
Dijkstra’s step DONE...
21’s cost =21

21’s prev ---—->17

Min cost node : 8, MARK IT!!

8’s neighbor is: 6

Dijkstra’s step DONE...
6 has a smaller cost already!!!

8’s neighbor is: 10
Dijkstra’s step DONE...
10’s cost = 20

10’s prev ----> 8

8’s neighbor is: 12
Dijkstra’s step DONE...
12’s cost =19

12’s prev ----> 8

Min cost node : 20, MARK IT!!

20’s neighbor is: 16

Dijkstra’s step DONE...

96

16’s cost =20
16’s prev ----> 20

20’s neighbor is: 19

Dijkstra’s step DONE...
19 has a smaller cost already!!!

Min cost node : 12, MARK IT!!

12’s neighbor is: 8

Dijkstra’s step DONE...
8 has a smaller cost already!!!

12’s neighbor is: 10

Dijkstra’s step DONE...
10 has a smaller cost already!!!

12’s neighbor is: 15

Dijkstra’s step DONE...
15 has a smaller cost already!!!

Min cost node : 10, MARK IT!!

10’s neighbor is: 8

Dijkstra’s step DONE...
8 has a smaller cost already!!!

10’s neighbor is: 11

Dijkstra’s step DONE...
11’s cost =22
11’s prev ----> 10

10’s neighbor is: 12

Dijkstra’s step DONE...
12 has a smaller cost already!!!

Min cost node : 16, MARK IT!!

16’s neighbor is: 13

Dijkstra’s step DONE...
13’s cost = 24
13’s prev ----> 16

16’s neighbor is: 20

Dijkstra’s step DONE...
20 has a smaller cost already!!!

Min cost node is GOAL. Path determined!!!

Cost of Shortest Path =21

Shortest Pathis: 21 ---> 7 =>4 --->3 «-->2 -=--> 1 --->5---> 0

98

[k sk o ok ke ok sk sk s o ok ok sk s ok e sk ok sk s s o ok ok sskok sk s ok s kol o sk sk sk skl sk sk sk ok o o ok

%

* FILE : ap.dat .

* AUTHOR : Athanassios Papadatos

*DATE : 31 October 1995

* DESCRIPTION : Contains the result output for All-Pairs Minimum Cost Paths
* algorithm for the graph in chapter9.

***/

*** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
*****************i***********'l'****i*****************i*****t***********i**********'k*****
*0 992 99
* 99 0 9999 99 99 99 99 1 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
* 99 99 0 992 99 99 99 99 99 1 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
* 992 990 99
* 99 99 99 99 0 99 2 99
* 9999992 990 99 99 99 99 1 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
* 99 99 99 99 99 99 0 99 99 99 99 99 1 99 99 99 99 99 99 99 99 99 99 95 99 99 99 99
* 99 99 99 99 992 99 0 99
* 99 99 99 99 99 99 99 99 0 99 99 99 99 99 10 99 99 99 99 99 99 99 99 99 99 99 99 99
10* 1 99 99 99 99 99 99 99 99 O 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 95
11* 99 99 99 99 99 99 99 99 99 99 0 99 99 99 99 99 10 99 99 99 99 99 99 99 99 99 99 99
12* 99 99 99 1 1 99 99 99 99 99 99 0 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

99

* ok k

OO0~ U D WN
L A

*kk

*

EE N O B)

1

[«

COO0O0O0O0CO0O0CO0OO0DO0OO0DO0CO0OO0OO0DO0OO0OHOODODOODOOOO
QOO0 000000000 O0DO0OO0DODODODOODOOBOOO

1

0

* 58

26
60
32
26
30
28
57

2

2

34
0
32
2
30
4
28
6
27
35
31

27

3

OO0 O0OO00O0O0O0OQOO0O0OO0OOO0OO00DOCOO0OO0O0OOOOR

3

2

60
0

62
34
28
32
30

4

N

OO O0O0O0OO0O0OOOO0OODODO0ODOO0DOOHOODODOONOODOOO
OO0 00 CO0OO0O0OCO0OO0OOCO0OO0OO0OHROOQOODOOOOWOO

5

N

QOO0 O0DO0O00DO0ODO0CODDOCO0DOO0OOLDODO0OOO0DVWMOODOOOO

6 7 8

0

0

OO0 000000000 DO0O0CO0ODO0OOCOOO0OCOOUVMOOOC

4 5 6 7

32
26
30
0

28
2

26
4

25
33
29

4
26
2
28
0
30
26
32
25

30
88
28
30
62
0

60
2

87
31
27
63
59

6
28
4
30
2
32
0
34
27

0

OOOOOOOOOOOOOO:OOOOOOOOOOOO
elleReloNoleoReNoNoNeNe o NeNeNeNoNe Rol~NoBe NaoNeo R NeNe BN N o

8

28
86
26
88
60
26

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

I 22 R R R R R R e R R s R S s e

QOO0 O0OO0DO0O0DO0DO0OO0DO0OOHOOODODO0OODDODOOODDODOOO
o0
0000000000000 0DO0DDCOQO0OO0OOAAODOWOO

(-]
COO00O0OO0OO0O0O0O0OO0OODO0OO0OOOOOOONOCOODOOO

QOO0 O0O0O0O0DOKHOODODODDOODODOOODODOOOOO

o
0000000000000 O0OO0O0DOWVWOOOOOOO

[=leReloNolNeNoNaolNeNaNeNoleoNolloNeNoNoNoNeNoNoNeNoNoNaNe]

0

OOOOOOSOOOOOOOOOOOOOOOOOOOOO

3

D000 O0O0O0DO0DO0DO0OO0OO0OO0OO0O0DO0OOHOODODODOODODOOO
CDONOONOOOCOOODDODOOODOOODOOCOCOOOOOO

w

o0
OO 00000000000 ODDOHFHODOODOOOOO0OOOOO

w
(=R NNl NeNeNeoNeNleNeNoleNeolleNeNeloNeReNoNoRoNoNeNeNel

-~
OO0 0 OO0 O0DO0DO0DOVO0OOHFROODOODODODO0DOODOOOOO

wn
[=R=J-NeleNoNalloNalleNaNoleNeNeNoloNoNoNoNoNoNeRoloNo el

e
QOO0 O0OOOONODOODOCDOOOOOOODOO0DODODOOOOO

s
CONOOOODDOOCOPFRPODOCOO0ODOODOO0O0OO0O0OOOOO

~
OO 00000000 OHOODOODOOODOODODOODODOOO

(=13

~

<«

w
leNeReRoRoNoRoNoNol jNelleNeleNoNoNoReNoNoNoNaoNoNoRoNoNoNal

QOONOCOODODO0OODO0O0ODO0OO0OODO0DO0DODODODOODOOOCOO

w0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

I R L 2 e R e R R RS S S SRSt sttt as s slss

35

27
57
25

3
61
1
63
35
1
33

60

31
25
29
27
27

7
29
5
31
3
33
1
35
28

27

45
11
43
13
41
15
39
17

17

13

21

100

17

17

46

16

48

14

14
72

20

16

18

*** 1 2 3 4 5 6 7
1*0 4 1 6 3 8 5
2*100 1 12128 5
3*104 0 6 3 8 5
4 *104 1 0 128 5
5*104 1 120 8 5
6*104 1 6 120 5
7*104 1 12128 0
8§ *104 1 6 128 5
9*104 1 12128 5
10104 1 6 3 8 5
11*104 1 6 3 8 5
12 104 1 12128 5
13* 104 1 12128 5
14* 10 4 1 6 128 5
15* 104 1 12128 5
16* 104 1 6 3 8 5
17* 104 1 6 3 8 5
18* 10 4 1 12128 5
is* 10 4 1 12 128 5
20 104 1 6 128 5
21* 10 4 1 12128 5
22104 1 6 3 8 5
23* 104 1 12128 5
24* 104 1 6 3 8 5
25* 104 1 6 128 5
26 10 4 1 12128 §
27* 104 1 6 128 5
28* 10 4 1 12128 5

Shortest Path 7<--1:

8

14

9

RNV DODDNOVDOVNDDDDNNNODNNDNNNDNDONDNDNDDN N N N

7<=~5<--3<~--1

Shortest Path 1ll<-~1:

1l<-=3<~-~1

Shortest Path 10<--1:

10 211 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

bl bbb A bl A bbb A A b b b AR A A R R R R S T L AL L

16
16
16
16
16

WRAWOAWWWWAWWWWWAWWOWWO WO W Www

10<--16<--22<~~24<-~17<~~11<~~3<=~~1

Shortest Path 27<~--1:

27<--25<--17<=~~11<=--3<--1

18
18

NN 9NN NO NSNS ST N N NN

20

WWOWWOWOWYWOWWOWWOWOLWWOWWWIWWIWIWLIW WWLLWLL

22

11
11
11
11

101

26
23
26
23
26
23
26
23
23
26
23
23
26
23
23
26
23

i3
13

27

15

24

21

17

17

28
28
28
28
28
28
28
28

25
25
25
25
25

19
19

LIST OF REFERENCES

[BYR94]Byrme, P.G., “A Mobile Robot Sonar System with Obstacle Avoidance 7,
Master’s Thesis, Naval Postgraduate School, Monterey, California, March, 1994.

[KAN89]Kanayama, Y., Noguchi, T., “Spatial Learning by an Autonomous Mobile
Robot with Ultrasonic Sensors”, University of California Department of Computer
Science Technical Report TRCS89-06, February, 1989.

[KAN95a]Kanayama, Y., “Introduction to Motion Planning”, Lecture Notes of the
Advanced Robotics Course, Department of Computer Science, Naval Postgraduate
School, March 25, 1995.

[KAN95b]Kanayama, Y., “Theory of Path Classes for Robot Motion Planning”,
Extended Abstract, Department of Computer Science, Naval Postgraduate School,
Monterey, California, November 7, 1995.

[KAN95c]Kanayama, Y., Kovalchic, J.G., Chuang, C.-L., Kelbe, FE., “Motion
Planning for Autonomous Mobile Robots”, Department of Computer Science, Naval
Postgraduate School, Monterey, California.

[KAN95d]Kanayama, Y., Kovalchic, J.G., Kelbe, EE., “Motion Planning for
Autonomous Mobile Robots” Proceedings. Autonomous Vehicle in Mine
Countermeasures Symposium pp. 8-74 to 8-80, Monterey, California, April 4-7,
1995.

[LOC94]Lochner J.T., “Analysis and Improvement of an Ultrasonic Sonar System
on an Autonomous Mobile Robot”, Master’s Thesis, Naval Postgraduate School,
Monterey, California, December, 1994.

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..........oeeeeeeeeevveeveeveessvenn’
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox LIbrary.........cccecevereereveceeiesineerereseneseeesenssesssaenenns
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS........covveereeeeecreereereeseeeseesreeseessee s sseenns
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4, Dr. Yutaka Kanayama, Code CS/KA.........comeveveriereecerriiernes
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Xiaoping Yun, Code EC/YX.....cccocvmmmmnrnreimcreneeeeeeenne
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

6. Lt. Athanassios D. Papadatos.........cccceeeeerevrereceeneerenreceeereeeennen
107 Alexandras Ave
Athens, 11475 GREECE

105

